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Abstract

Numerical models are most effective when they account for all sources and types of

data. Real data exhibit complex multivariate features such as non-linear, constraint,

and heteroscedastic relations. Current geostatistical simulation methods that allow

for modeling of multiple variables rely on simple statistical models that are some-

times inappropriate or unable to account for realistic complexity in the multivariate

relations.

This dissertation develops the stepwise conditional transformation technique

for use as a pre- and post-processing tool for multivariate Gaussian simulation.

The back transformation enforces reproduction of the original complex multivari-

ate features. The methodology and underlying assumptions are explained. Several

petroleum and mining examples are used to show features of the transformation and

implementation details.

Application to the Red Dog zinc deposit showed an increase in profit from the

simulation approach relative to the common practice of kriging. A comparative

study of multivariate simulation using stepwise conditionally transformed variables

against conventional simulation approaches is also shown. Further, the stepwise

transform can also be used to account for multivariate features resulting from trend

modeling.
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Chapter 1

Introduction

Geostatistics is a relatively new and rapidly growing area in engineering, the earth
sciences, and applied mathematics. The field is devoted to the application of statisti-
cal techniques in the study of spatially variable phenomena. Although geostatistics
was first developed to improve ore reserve estimation in a mining context, it has
grown in application to many other areas of the earth sciences.

A significant advantage to the application of geostatistics is the ability to model
uncertainty. Simulation results in a set of realizations that honour the data, the
global histogram, and the spatial correlation. The difference between realizations
provides a measure of uncertainty. An assessment of uncertainty makes it possible
to evaluate risk more accurately and make better-informed decisions.

In the case of multiple variables, multivariate geostatistics provides the modeling
tools to account for additional information from different types/sources of data.
Accounting for the relationship between multiple variables can greatly improve the
representativity of these numerical models. Risk assessment and decision-making
based on these multivariate models will be better.

1.1 Problem Setting

The construction of geologically realistic models depends on the integration of data
of different types, sources, and volumes of measurement. For resource characteriza-
tion, available data may consist of field data, analogue data and expert knowledge.
For example in petroleum reservoirs, field data may include core samples, well logs,
and seismic data. In a mining context, several mineral grades may be available from
drill holes and blast holes. In all cases, the numerical models should account for field
data and conform to the geologist’s interpretation of the depositional environment.

Geostatistical simulation permits the construction of realizations that honour
the data, histogram and spatial variability. Classical techniques require that condi-
tional distributions of the attribute of interest be defined at each location u within
the domain A. In the univariate case, the conditional distribution at location u
is based on (or conditional to) correlated data of the same type. Similarly, the
multivariate case requires that the conditional distribution at each location account
for correlated data of multiple types. The task of conditioning local distributions
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to multiple variables is a difficult problem. Differences in distribution, sampling
density, spatial continuity, and size scales of the data types complicate the inference
of this distribution.

Local conditional distributions are determined by assigning weights to nearby
data. These weights are traditionally obtained by solving the kriging system of
equations. Kriging accounts for data redundancy, closeness and correlation. The
relationship between the data is described by a model of coregionalization. The only
practical model that is mathematically consistent is the linear model of coregional-
ization (LMC) [17, 28, 40]. A simplification of the LMC is achieved in the Markov
model for collocated data [4, 28, 81]. Based on the same theoretical foundation as
the LMC and Markov model, the Markov-Bayes model was developed specifically
for indicator simulation [42].

In conventional simulation, the role of kriging is to determine the local condi-
tional distribution from which a simulated value is drawn. The most common simu-
lation approach is Gaussian simulation, which is based on the simplest multivariate
distribution - the Gaussian (or normal) distribution. In the Gaussian framework,
the kriged estimate is exactly the conditional expectation of a Gaussian distribution,
and the kriging estimation variance is exactly the conditional variance of this same
Gaussian distribution [15, 28, 40]. Thus in this context, kriging based on a model of
coregionalization provides the two essential parameters to define the local Gaussian
distribution: the mean and variance.

In the presence of two or more variables, the conventional procedure for Gaussian
simulation is to transform each variable to a Gaussian distribution one at a time.
This ensures that each variable is univariate Gaussian; however, the multivariate
distributions (of two or more variables at a time) are not explicitly transformed
to be multivariate Gaussian although they are assumed to be multiGaussian. Real
multivariate distributions may show non-Gaussian features such as non-linear, het-
eroscedastic, and/or mineralogically constrained features (see Figure 1.1). In these
instances, simulating within the conventional Gaussian framework may not correctly
reproduce the spatial variability of the phenomena.

The main objective of multivariate geostatistics is to improve the accounting
of additional information to obtain models that are closer to the truth. Poorly
reproducing multivariate relations is a serious problem.

The objective of this research is to address the problem of integrating multi-
ple variables in geostatistical simulation. The research aims to improve upon the
conventional multivariate Gaussian simulation.

The first development is to improve conventional Gaussian cosimulation by en-
suring adherence to multiGaussian assumptions. The stepwise conditional trans-
formation is a robust technique that ensures multivariate Gaussianity of collocated
transformed variables. The method is robust in handling problematic multivariate
distributions, and is effective as a pre- and post-processing algorithm to Gaussian
simulation. Theoretical and practical implementation details of this technique will
be explored.

The practicality of the transformation method in various applications will be
examined. These applications include: the multivariate simulation of a real, complex
mineral deposit; a comparative study with more traditional multivariate simulation
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X1 X1X1

X2 X2X2

Figure 1.1: Schematic illustration of different bivariate distributions: non-linear
(left), constraint (centre) and heteroscedastic (right).

techniques; and application of the transformation to geostatistical simulation with
a trend model.

The results of this research affect the characterization of natural resources. Ac-
counting for multiple data types will reduce the uncertainty in the models and
improve characterization of heterogeneities. Petroleum, mining, environmental,
forestry, and agricultural industries will benefit from numerical models that are
more realistic.

1.2 An Introductory Example

A petroleum dataset referred to as the “Two Well” data is considered as a spe-
cific example to illustrate (1) the conventional Gaussian cosimulation of two model
variables, and (2) the inherent assumption of multiGaussianity in the cosimulation
process.

The two variables of interest are porosity and permeability; Figure 1.2 shows the
univariate and bivariate distributions of the original variables and also the bivariate
distribution of the normal scores of both variables, after normal score transforma-
tion. Prior to simulation, the conventional modeling approach entails that both
the porosity and log permeability must be transformed to normal scores and the
variography determined for these normal scores. Application of Gaussian cosimula-
tion inherently assumes that the bivariate and all higher order distributions are also
Gaussian.

Note that in the original bivariate distribution, the region of high porosity val-
ues and low log permeability values (that is, the region approximately defined by
φ > 0.18 and logk < 2.5) appears to have two constraints. After normal scores
transformation of both variables, the bivariate distribution of the normal scores also
exhibits a strange non-linear constraint.

Sequential Gaussian simulation was performed on porosity, and collocated cosim-
ulation was performed for log permeability. Figure 1.3 shows a sample realization
for porosity and the corresponding cosimulated realization for log permeability. For
comparison, the original bivariate distribution is provided next to the crossplot of
the simulated porosity and log permeability. The constraints that were noted in the
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Figure 1.2: Univariate and bivariate distributions of original data. The top two his-
tograms give the distribution of the original porosity (top left) and log permeability
(top right); the bottom crossplots show the relation of the original data (bottom
left) and the relations between the corresponding normal scores (bottom right).
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Figure 1.3: One realization of porosity (top left) and cosimulated log permeability
(top right), using normal score transformation. The bottom figures show the cross
plot of the original data (bottom left) and the cross plot of the cosimulated values
(bottom right).

original data cross plot are also shown on the realization crossplot; the constraints
are not apparent in the realization crossplot. Note that the density of simulated
values on the crossplot makes it difficult to discern whether the top constraint is
reproduced; however, it is clear that the lower right constraint is not honoured. The
correlation coefficient is approximately reproduced.

Although the cosimulated results in original units reproduce the correlation be-
tween the input variables (Figure 1.3), the cross plot of the cosimulated values in
Gaussian space does not reproduce the same bivariate relations between the data
normal scores. This is shown in Figure 1.4. Slight differences in the correlation
coefficient (for both original and Gaussian space crossplots) are attributed to sta-
tistical fluctuations. Departures of the conditioning data from the bivariate Gaus-
sian assumption leads to a poor reproduction of the bivariate relations between the
two model variables. This poor reproduction of the relationship between porosity
and permeability may have serious consequences in exploration and/or production
drilling. In the regions of the reservoir where the simulated values (for both porosity
and permeability) fall outside the bounds of the constraints in Figure 1.3, drilling
with the expectation of finding relatively high porosity and permeability may prove
to be a costly venture.
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Figure 1.4: Comparison of cross plots generated by normally transforming the model
variables (left) and the normal score values of the cosimulated results (right).
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Figure 1.5: Comparison of the original data cross plot with the simulated values (in
original space) using stepwise conditionally transformed variables.

As a preview to the effectiveness of the stepwise conditional transformation in
honouring the multivariate data distribution, Figure 1.5 shows the crossplot of the
original data alongside the crossplot of the simulated results when the stepwise
transformation was applied. As with the simulated values using the conventional
normal score transform, the density of simulated values on the back transformed
results using stepwise transformed variables makes it difficult to see if the top con-
straint is reproduced. It is clear that the bottom constraint is better reproduced by
applying the stepwise conditional transform than the normal score transform. This
improved reproduction of the multivariate distribution yields models of porosity and
permeability that are closer to the reality (based on the available data). As a re-
sult, risk analysis and decision-making based on these models are better in reducing
potential economic loss.
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1.3 Dissertation Outline

Chapter 2 contains a literature review including (1) a review of fundamental geosta-
tistical concepts required to understand the current state of multivariate geostatis-
tics, and (2) an overview of multivariate statistical techniques that have potential
for future applications in geostatistics.

Chapter 3 introduces the stepwise conditional transform as a multivariate Gaus-
sian transformation technique to improve Gaussian simulation. Practical issues to
implementation are addressed in Chapter 4.

Chapter 5 presents a real application of the transformation for multivariate sim-
ulation of Red Dog mine in Alaska, USA. A comparison to the conventional practice
of kriging is also shown in this chapter. A comparison of the stepwise transformation
against other conventional multivariate simulation approaches is shown in Chapter
6.

Chapter 7 presents an application of the stepwise conditional transformation for
geostatistical simulation to account for a trend. This application of the transforma-
tion shows the widespread applicability of the technique.

Chapter 8 concludes this dissertation with some final comments regarding the
transformation, its place in multivariate geostatistics, and other future works yet to
be explored in this area.

Appendix A provides specific details about the prototype programs developed
to implement the stepwise conditional transformation. Appendix B consists of pre-
liminary research results in the development of a direct sequential cosimulation
framework.
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Chapter 2

Concepts and Algorithms for
Multivariate Simulation

2.1 Multivariate Geostatistics

Geostatistics is the practical application of probability theory to the modeling of
natural phenomena. Since its birth in the 1960s, many different parametric and
non-parametric geostatistical techniques have emerged. These algorithms all rely
on the concept of a random function and the definition of a spatial distribution
corresponding to that random function.

Multivariate datasets are common in geostatistics. Conventional geostatisti-
cal tools make assumptions regarding data distributions, stationarity of population
statistics, and linear correlation between variables. Unfortunately, most sample
datasets do not conform to all these assumptions.

2.1.1 Random Function Concept

A random variable (RV), Z (denoted by upper case letter), is a variable that can
take a series of possible values as characterized by a probability density function
(pdf) or equivalently a cumulative distribution function (cdf). Spatial dependence
of the RV is denoted by Z(u), where u is a location within the domain A. A
particular outcome at some location u is denoted by z(u) (lower case letter). The
cdf characterizing the uncertainty in a RV Z(u) is:

FZ(u; z) = Prob{Z(u) ≤ z} (2.1)

A random function (RF) is the set of dependent random variables, {Z(u),u ∈
A}. The RF is defined by its spatial law [17, 21, 28].

FZ(u1),...,Z(uN )(z(u1), . . . , z(uN )) = Prob{Z(u1) ≤ z(u1), . . . , Z(uN ) ≤ z(uN )},(2.2)
∀uα ∈ A,α = 1, . . . , N

where N is the number of locations in domain A.
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Notation

The mathematical notation adopted throughout the literature review is introduced.
For the univariate case or the case where we are only interested in the primary

variable, the random variable is defined as

Z(uα), α = 1, . . . , N

α = index that specifies location in domain A,
N = total number of locations in domain A

Note that N can be potentially very large.
In the multivariate case, an additional subscript index is required to specify the

data type, that is,

Zi(uα), i = 1, . . . , P, α = 1, . . . , N

where

i = index that specifies the data type,
P = total number of different data types,

A particular outcome of the random variable is similarly defined except with
z (lower case) replacing Z (upper case). Furthermore, where reference is made to
some arbitrary location in the domain A (as in theory development in the following
sections), then the subscript α will be dropped for simplicity. The number of data
locations is n where n < N .

The first and second order moments of the RF will be denoted as:

1. Mean:

� For the univariate case,

E{Z(u)} = µ(u)

� For the multivariate case,

E{Zi(u)} = µi(u)

2. Covariance:

� For the univariate case,

Cov{Z(u) · Z(u + h)} = C(u,u + h)

� For the multivariate case,

Cov{Zi(u) · Zj(u + h)} = Cij(u,u + h), i, j = 1, . . . , P

where h is a distance vector from location u.
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Stationarity. The concept of stationarity is critical to inference. Stationarity
allows the geostatistician to extend his exploratory statistical analysis from limited
data to the entire domain of interest.

Stationarity is a decision that assumes invariance of the multivariate cdf over
the domain, that is

FZ(u1),...,Z(uN )(z(u1), . . . , z(uN )) = FZ(u1+h),...,Z(uN+h)(z(u1 + h), . . . , z(uN + h)), ∀h

Invariance of the multivariate cdf implies invariance of all lower level (i.e. univariate,
bivariate, . . . , (k − 1)-variate) distributions and all lower level moments [21].

First order stationarity amounts to invariance of the first order moment or the
mean; second order stationarity implies invariance of the second order moment or
the covariance. For practical purposes, second order stationarity is often sufficient
for geostatistical inference, i.e. E{Zi(u)} = µi and Cov{Zi(u) · Zj(u + h)} =
Cij(h),∀i, j,h and u ∈ A.

Ergodicity. Another concept that is closely related to stationarity is that of er-
godicity. Geostatistical simulation results in a simulated value for each RV within
the domain, A; the set of these simulated values over the domain is often referred
to as a realization of the RF model. If this domain is sufficiently large, then the
ergodic theorem states that the mean of each realization approximates the expected
value of the RF [55]. For practical purposes, an ergodic domain should be large rel-
ative to the range of the covariance structure of the RF, {Z(u),u ∈ A} [21]. Minor
differences between the realization statistics and the model statistics is referred to
as ergodic fluctuations [28].

2.1.2 Normal Score Transform

The normal or Gaussian distribution is characterized by two parameters - its mean
µ and variance σ2. The probability density function that produces its characteristic
bell shape is:

g(y) =
1

σ
√

2π
· exp

[
−1

2

(
y − µ

σ

)2
]

(2.3)

A standard normal distribution refers to a mean of zero and a unit variance.
The corresponding pdf is:

g(y) =
1√
2π

· exp
(
−y2

2

)
(2.4)

The normal distribution is the limit distribution for the Central Limit Theorem.
For a multiGaussian RF, the linear combination of two or more RVs is normally
distributed [35]. In fact, the sum of independent RVs following any distribution
tends toward a normal distribution [35]. This result implies great simplicity for
simulation and is the main reason why Gaussian approaches are commonly used.
However, most earth sciences variables are not normally distributed. In order to
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Figure 2.1: Transformation of original data cumulative distribution (Z) to a stan-
dard normal cumulative distribution (Y ).

apply the Gaussian approach, the variables must first be transformed to normal
space.

The basic steps in the common “graphical” or “quantile” transformation process
are described below and illustrated in Figure 2.1:

1. The sample cumulative distribution function of the original data variable, Z,
must be calculated. The transformation from one distribution to another is
accomplished based on the probability associated to each data value.

2. For each sample data, zi, i = 1, . . . , n, the corresponding cumulative proba-
bility is identified, pi, i = 1, . . . , n. Once determined, the normal score value,
yi, i = 1, . . . , n, corresponding to each probability is found:

yi = G−1[F (zi)] = G−1(pi) (2.5)

This transformation is commonly referred to as the normal score transform.
Once transformation is complete, the transformed variables (Yi) are used in

subsequent geostatistical calculations. Alternative transformation procedures such
as fitting Hermite polynomials could be considered [13, 40]. The results of simulation
must then be back transformed to original units. The back transformation follows a
similar procedure, except the direction of transformation in Figure 2.1 is reversed.

2.1.3 Measures of Spatial Variability

The two most common measures used to describe the spatial continuity of a phe-
nomena are the variogram and the covariance functions.

The variogram, 2γ(h), is a two-point statistic used as a measure of dissimilarity
between two random variables separated by a Euclidean distance, h,

2γ(h) = E{[Z(u) − Z(u + h)]2} (2.6)
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Figure 2.2: Semi-variogram interpretation: moment of inertia about the 45o line.
Source: Goovaerts (1997)

where Z(u) is a spatially distributed RV. In practice, the experimental variogram
(denoted with by the symbol γ̂) is calculated as the average squared difference
between data approximately separated by h:

2γ̂(h) =
1

N(h)

N(h)∑
i=1

[Z(u) − Z(u + h)]2 (2.7)

where N(h) is the number of pairs of data approximately separated by h. The
symbol γ(h) is known as the semi-variogram and is simply half the variogram. The
semi-variogram can be interpreted as the “moment of inertia of the scattergram
around the 45o line” [28, 39] (See Figure 2.2).

Alternatively, the covariance function is a measure of similarity between data
pairs:

C(h) = E{[Z(u) · Z(u + h)]} − µ(u) · µ(u + h) (2.8)

Note that the covariance of a single random variable at h = 0 is the variance of that
random variable, i.e., C(0) = σ2

Z .
There are some interesting features that are common to both measures:

� Under stationarity, the semivariogram, covariance and variance are related:

γ(h) = C(0) − C(h) (2.9)

� For spatial inference, the covariance function must ensure that the variance of
linear estimators are positive. This amounts to requiring that the covariance

12



γ

Distance, feet

Nugget Effect Variogram Model

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

γ

Distance, feet

Spherical Variogram Model

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

γ

Distance, feet

Exponential Variogram Model

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

γ

Distance, feet

Gaussian Variogram Model

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 2.3: Common negative semi-definite variogram models: nugget effect (top
left), spherical (top right), exponential (bottom left) and Gaussian (bottom right).
Source: MIN E 612 Course Notes (1999)

function be positive semi-definite or the variogram function be negative semi-
definite. Several variogram models are known to satisfy this constraint and
are commonly used in variogram modeling. These include the nugget effect,
spherical, exponential, and Gaussian models (See Figure 2.3).

For two or more variables, the spatial relationship between pairs of random vari-
ables is also required. For this purpose, the cross-variogram (Equation 2.10), cross-
covariance (Equation 2.11) and their corresponding relationship (Equation 2.12) are
given below:

2γij(h) = E{[Zi(u) − Zi(u + h)][Zj(u) − Zj(u + h)]} (2.10)

Cij(h) = E{[Zi(u) − µi(u)][Zj(u + h) − µj(u + h)]} (2.11)

Cij(h) = Cij(0) − γij(h) (2.12)

Note that the cross covariance function may not necessarily be symmetric, that is,
Cij(h) �= Cji(h). This is commonly referred to as the lag effect [28, 40]. An example
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of such a case is provided by Journel and Huijbregts, wherein the rich grades of Pb
lag behind those of Zn in a specific direction [40].

For standardized variables, Cij in Equations 2.11 and 2.12 can be replaced by
ρij , the correlation coefficient between Zi and Zj .

Determination of the cross variogram or cross covariance is also based on ex-
perimental data. As a result, the modeling of direct and cross covariance must be
modeled in a mathematically consistent manner, respecting physical laws and en-
suring positive finite variances [17]. Models of coregionalization model the spatial
continuity of two or more variables.

2.1.4 Models of Coregionalization

Consider a multivariate dataset consisting of P types of data. Explicit charac-
terization of the spatial relationship between the P variables requires a matrix of
covariance functions Cij(h), i, j = 1, . . . , P :

C(h) =


 C11(h) · · · C1P (h)

...
. . .

...
CP1(h) · · · CPP (h)


 ,∀h

This covariance matrix is often assumed to be symmetric (i.e. Cij(h) = Cji(h)).
Note that each element, Cij(h), represents an ni×nj matrix of covariances where ni

is the number of data for the ith variable. To ensure that all variances are positive,
the covariance matrix must be positive semi-definite, i.e. all leading principal minor
determinants of order k must be non-negative, k = 1, . . . , P , i.e.

det C(h) =
P∑

i=1

(−1)i+jCij(h) det Uij(h) ≥ 0

where detUij(h) is a minor determinant of order P − 1 of the P × P covariance
matrix C, with the indices i and j denoting the row and column of C removed in
order to form the (P − 1) × (P − 1) matrix [30, 61]. For the simple case of second
order covariance matrix, the positive semi-definite constraint requires that

Cii(h)Cjj(h) ≥ Cij(h)Cji(h), ∀i, j,h

Linear Model of Coregionalization (LMC)

Consider P stationary random functions, Z = {Z1, . . . , ZP }. Suppose that each
random function Zi, i = 1, . . . , P can be expressed as a linear combination of K

independent second-order stationary random functions, Yk, k = 1, . . . ,K, each with
zero mean and covariance function Ck(h) :

Zi(u) =
K∑

k=1

aikYk(u) + µi (2.13)
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where

E{Zi(u)} = µi

E{Yk(u)} = 0

C{Yk(u), Yk′(u + h)} = Ck(h), if k = k′ (2.14)
= 0, otherwise

Note that the RFs Yk, k = 1, . . . ,K are underlying and unknown. If the RFs
Yk, k = 1, . . . ,K are grouped by those RFs Yk with the same direct covariances
Ck(h), then Equation 2.13 can be written as:

Zi(u) =
L∑

l=0

nl∑
k=1

al
ikY

l
k(u) + µi (2.15)

with

C{Y l
k(u), Y l′

k′ (u + h)} = C l(h), if k = k′ and l = l′ (2.16)

= 0, otherwise

where L + 1 is the number of groups with different direct covariances, and nl is the
number of RFs with the same covariance in group l. Based on Equation 2.15, the
cross covariance of two RVs Zi(u) and Zj(u + h) is

Cij(h) = E

{(
L∑

l=0

nl∑
k=1

al
ikY

l
k(u)

)(
L∑

l′=0

nl′∑
k′=1

al′
jk′Y l′

k′ (u + h)

)}

=
L∑

l=0

L∑
l′=0

nl∑
k=1

nl′∑
k′=1

al
ika

l′
jk′C{Y l

k(u)Y l′
k′ (u + h)} (2.17)

Using the simplified covariance in Equation 2.16 simplifies Equation 2.17 to

Cij(h) =
L∑

l=0

nl∑
k=1

al
ika

l
jkC{Y l

k(u)Y l
k(u + h)}

=
L∑

l=0

nl∑
k=1

al
ika

l
jkC

l(h) (2.18)

From Equation 2.18, the sill of the lth covariance structure, C l(h), is given by∑nl
k=1 al

ika
l
jk. Defining bl

ij, i = 1, . . . , P, j = 1, . . . , P such that

bl
ij =

nl∑
k=1

al
ika

l
jk
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simplifies Equation 2.18 to

Cij(h) =
L∑

l=0

bl
ijC

l(h) (2.19)

It only remains to determine C l(h), l = 0, . . . , L and the (L + 1) · P 2 param-
eters bl

ij so that covariances are jointly positive definite. If the covariance mod-
els C l(h), l = 0, . . . , L are chosen to be known positive semi-definite models, this
amounts to requiring that the L + 1 matrices of bl

ij coefficients are also positive
semi-definite [17, 28, 33, 40]. For 2 variables, this constraint requires that

bl
ii · bl

jj ≥ bl
ij · bl

ji,∀i, j, l

In practice, this requires that for P variables, a total of P (P + 1)/2 licit covari-
ances are required to be modeled simultaneously to ensure positive semi-definiteness.
Consequences of a non-positive semi-definite covariance matrix are singular kriging
systems and negative estimation errors.

Markov Models

Two models exist under this heading: Markov Model I and Markov Model II. The
former is the more common Markov assumption used in most collocated cokriging
applications, while the latter is a variation of the original model for cases where the
volume support of the secondary data is much larger than that of the primary data.

Markov Model I. Modeling direct and cross-variograms is a complex and tedious
task. A Markov-type model of coregionalization simplifies this process. Consider two
standard jointly Gaussian RVs, Zi(u) and Zj(u), i �= j, which are the primary and
secondary variable, respectively. The Markov-type assumption states that collocated
hard data will screen the influence of other hard data that is further away [4, 81],
i.e.

E{Zj(u)|Zi(u) = z, Zi(u + h) = z′} = E{Zj(u)|Zi(u) = z} (2.20)

Derivation of the Markov cross covariance model is based on determining the
covariance of Zj(u) given Zi(u) = z and Zi(u + h) = z′, where fh(z, z′) is the
bivariate pdf of Zi(u) and Zi(u + h):

Cij(h) = E{Zj(u) · Zi(u + h)}
=
∫ ∫

E{Zj(u) · Zi(u + h)|Zi(u) = z, Zi(u + h) = z′}fh(z, z′)dzdz′

=
∫ ∫

z′E{Zj(u)|Zi(u) = z, Zi(u + h) = z′}fh(z, z′)dzdz′

=
∫ ∫

z′E{Zj(u)|Zi(u) = z)fh(z, z′)dzdz′ based on Markov assumption
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Since the two RVs are jointly Gaussian, the regression of Zj on Zi is

E{Zj(u)|Zi(u) = z) = ρij(0) · z

where ρij(0) is the correlation between Zi(u) and Zj(u) (i.e. collocated). This result
gives the Markov cross covariance model:

Cij(h) = ρij(0) ·
∫ ∫

z′zfh(z, z′)dzdz′

= ρij(0) · Cii(h),∀h (2.21)

For standardized variables, that is, random variables with unit variance, Equation
2.21 becomes

ρij(h) = ρij(0) · ρii(h),∀h (2.22)

The Markov model only requires that the covariance function of the primary
variable be modeled. The cross covariance between the primary and secondary
variable is approximated using the relation in Equations 2.21 or 2.22. Use of only
the collocated secondary data means that the covariance function of the secondary
data is not required [4, 81].

One situation in which the Markov approximation is a poor assumption is the
integration of data of significantly different volume supports. For example, suppose
there is seismic and core data available at location u. The small scale data from
the core sample cannot screen the seismic data that informs a much larger volume
although both data are centered at the same location.

Markov Model II. For the case when the secondary variable Zj(u) is defined on
a much larger volume support than the primary variable Zi(u), Journel introduced
a variation of the Markov assumption referred to as Markov Model II [37]. Simply
stated, Markov Model II assumes that collocated secondary data will screen the
influence of other secondary data that is further away [37], i.e.

E{Zi(u)|Zj(u) = z, Zj(u + h) = z′} = E{Zi(u)|Zj(u) = z} (2.23)

The corresponding cross covariance model is

Cij(h) = Cij(0) · Cjj(h),∀h (2.24)

Derivation of 2.24 follows from the derivation of Markov Model I. Unlike the more
popular Markov Model I which requires only modeling of the covariance model
of the primary variable, Cii(h) to define the cross covariance, Markov Model II
requires that the covariance model of the secondary variable, Cjj(h) be modeled.
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The resulting cross-covariance is obtained via relation 2.24. Further, the Markov
Model II defines the primary covariance as a function of the secondary covariance
and a residual covariance, CR(h) [37, 65]:

Cii(h) = C2
ij(0) · Cjj(h) + (1 − C2

ij(0)) · CR(h),∀h (2.25)

Since Markov Model II requires modeling of the secondary covariance, from
which subsequent definition of the primary and cross covariance is possible, the
resulting model of coregionalization must be checked to ensure the model is positive
semi-definite.

Markov-Bayes

Use of the LMC and the Markov models of coregionalization in traditional Gaussian
algorithms only allows for transfer of linear, homoscedastic correlation. The Markov-
Bayes model aims to account for the entire conditional distribution at each location
u [42, 83]. This model was developed for the purpose of improving non-parametric
geostatistics, specifically indicator simulation.

Suppose Zi is the sparsely sampled primary variable, and Zj is the densely
sampled secondary variable. The primary data are considered “hard” data and are
coded as indicators:

i(uα; z) =
{

1, if zi(uα) ≤ z
0, otherwise

where zi(uα) is the primary data value at location uα. By convention the indica-
tor random variable is denoted I(uα; z) with outcome i(uα; z), which is not to be
confused with the variable subscript index “i” for the primary variable.

Secondary data Zj(uα) are used to define a “local prior” or a “pre-posterior”
distribution of Zi(uα). Secondary data are coded as probabilities or Y data:

y(uα; z) = prob{Zi(uα) ≤ z|Zj(uα)}

where y(uα; z) ∈ [0, 1] and usually �= Fi(z). For locations where hard data exists
(i.e. zi(uα) is known), the local prior cdf becomes

y(uα; z) =
{

1, for all z ≤ zi(uα)
0, for all z > zi(uα)

Secondary information can also be coded as a constraint interval or a continuous
interval based on calibration to a bivariate distribution representing correlation be-
tween primary and secondary data [42, 83].

This model requires (1) a Markov-type assumption to simplify modeling of cross
covariance models between I(u; z) and Y (u; z), and (2) use of Bayes theorem to
update local prior distributions and obtain posterior conditional distributions, given
that direct and cross covariances are known.
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Figure 2.4: Graphical interpretation of calibration parameter B(z) of soft data in
Markov-Bayes updating. Source: Journel and Zhu, 1990

Based on the Markov approximation, the direct and cross covariances are cali-
brated by B(z) (see Figure 2.4) [42, 83]:

CIY (h; z) = B(z) · CI(h; z) ∀h

CY (h; z) =
{

B2(z) · CI(h; z), ∀h > 0
|B(z)| · CI(h; z), h = 0

where

B(z) = m1(z) − m0(z)
m1(z) = E{Y (u; z)|I(u; z) = 1}
m0(z) = E{Y (u; z)|I(u; z) = 0}

Zhu and Journel (1990, 1993) interpret the difference between m1(z) and m0(z) as a
measure of accuracy of the local prior distributions of Y (u; z) in predicting Zi(u) ≤ z

and Zi(u) > z, respectively [42, 83]. A calibration of B(z) = 1 is considered the
best in terms of accuracy since this means that the primary and secondary RV are
perfectly spatially correlated, i.e. CY (h; z) = CI(h; z) and CIY (h; z) = CI(h; z), ∀h.
Conversely, B(z) = −1 is interpreted as perfect “error” where the event Zi(u; z) ≤ z
is actually assigned the probability of Zi(u; z) > z. The worst case occurs when
B(z) = 0 which indicates that soft information Y (u; z) does not help in predicting
the value of the indicator I(u; z).

Once the set of calibration parameters B(z),∀z is established, the model of
coregionalization is fully defined. The Markov approximation along with Bayesian
updating requires only the direct covariance of the primary variable or hard data
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Figure 2.5: Schematic illustration for volume variance showing two volumes, v and
V separated by a lag vector h.

be modeled. As this model is dependent on a Markov assumption, it is also a poor
approximation when conditioning to data of significantly different supports.

2.1.5 Volume Variance

Thus far, no mention has been made about the volume support of the data. Consider
in a petroleum context, where well log and seismic data are available. Well log
samples can be vertically spaced as close as 10cm apart, while seismic data can be
found at 50-100m intervals. The log information is considered to inform a much
smaller volume of the domain than the seismic data. To integrate different types of
data, the support of the samples must be considered.

The average covariance (C̄) is the mean value of the covariance calculated when
one extremity of the lag vector h informs a volume v and the other extremity informs
a larger volume V (see Figure 2.5).

C(V, v) =
1

V · v
∫

V (u)
dx′
∫

v(u′)
C(x − x′)dx (2.26)

Similarly, the mean variogram value is calculated as

γ(V, v) =
1

V · v
∫

V (u)
dx′
∫

v(u′)
γ(x − x′)dx (2.27)

The mean covariance and the mean variogram depend on the geometry of the two
volumes, v and V , and the covariance/variogram functions. Analytical expressions
can be obtained by solving the quadruple or sextuple integrals (for 2D and 3D,
respectively) in Equations 2.26 or 2.27 for simple models like the spherical [13, 52]
(see Figure 2.3). As well, some tables are available that summarize the values for
the spherical and exponential variogram in 2D and 3D [40]. In practice, however,
the common approach to calculating these two functions is numerical integration.
This numerical integration is done by discretizing the two volumes into a number of
points, calculating the variogram values between all combinations of the discretized
points in v with the points in V , and then averaging these to obtain the mean value.

20



A large value of γ(V, v) indicates large variability between the volumes v and
V . Note further that γ(v, v) is the variability between volume v with itself, and
this value will decrease as the volume decreases. Note that if v is a point support,
γ(v, v) = 0 and C(v, v) = σ2. Conversely, if V is an infinite stationary domain,
γ(V, V ) = σ2 and C(V, V ) = 0.

A related notion to the expected value of the covariance and the variogram, is
the dispersion variance, which is the expected value of the variance.

D2(v, V ) = E




 zi︸︷︷︸

Support v

− mi︸︷︷︸
Support V




2
 (2.28)

The dispersion variance is related to the mean covariance by

D2(v, V ) = C (v, v) − C (V, V ) (2.29)

and to the mean variogram by

D2(v, V ) = γ (V, V ) − γ (v, v) (2.30)

Since the covariance model is required to be positive semi-definite, D2(v, V ) ≥ 0.
If v is a point support, then the dispersion variance simplifies to D2(v, V ) = γ (V, V ).
Conversely, if V is an infinite domain, then D2(v, V ) = C (v, v).

An important property of the dispersion variance is the additivity of variances:

D2(v,A) = D2(v, V ) + D2(V,A) (2.31)

This additivity property is also referred to as “Krige’s relation”. The variance of a
small volume, v, within the domain A, is given by the sum of the variance of the
small support within the block volume, V , and the variance of the block support
within the domain. This relation quantifies the change in the expected variance
with volume.

In practice, it is possible to use C̄ directly to solve the kriging equations to
account for differences between the support of the data and the volume to be es-
timated. Krige’s relation is used to determine the change in the variance as the
support changes.

2.1.6 Kriging

Kriging is an optimization technique consisting of a class of linear regression algo-
rithms used in spatial estimation. In estimating unsampled locations, weights are
assigned to the known dataset and the estimate is a linear combination of the sample
data values.

This class of algorithms consists of many different “flavours” of kriging: simple,
ordinary, block, cokriging, disjunctive [53], universal [31], multiGaussian [72, 73, 74],
etc. As its name suggests, the most basic form of kriging is simple kriging (SK),
wherein there are no constraints on the assigned values of the weights. Another
commonly used form of kriging is ordinary kriging (OK), a technique in which
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the weights are constrained to sum to 1. Similar to OK, the other techniques are
variations of the SK method and may account for potential trends in the data,
volume support of the data, etc. The kriging equations are derived below for SK;
OK is also addressed for its robustness in practice. The context of estimation using
multiple variables is also considered.

In general, the kriged estimate is defined as

Z∗(u) − µ(u) =
n∑

α=1

λα[Z(uα) − µ(uα)] (2.32)

where Z∗(u) is the estimate at the location of interest, u, λα is the weight given
to the data value at location uα, α = 1, . . . , n, and µ(u) and µ(uα) denotes the
expected values at locations u and uα, respectively. In practice, n may vary from
location to location, so that only a maximum number of nearby data are considered
for estimation.

The weights are determined by minimizing the expected squared error between
the true value, Z(u), and the estimate, Z∗(u):

σ2
E = E{[Z(u) − Z∗(u)]2} (2.33)

under the condition of unbiasedness, that is,

E{Z(u) − Z∗(u)} = 0 (2.34)

Equations 2.32 to 2.34 form the basic equations for kriging. Interestingly, minimiza-
tion of the error variance in Equation 2.33 is not dependent on the data values, but
rather it is dependent on their spatial configuration and their covariance structure.

Simple Kriging

In SK, the mean is considered known and stationary. Hence the kriging estimate in
Equation 2.32 can be written in terms of the residual variable, Y ,

Y (uα) = Z(uα) − µ(uα), α = 1, . . . , n

to give the estimate

Y ∗(u) =
n∑

α=1

λαY (uα)

The kriging variance becomes
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σ2
SK = E{[Y (u) − Y ∗(u)]2}

= E{Y (u), Y (u)} − 2E{Y (u), Y ∗(u)} + E{Y ∗(u), Y ∗(u)}

= C(0) − 2
n∑

α=1

λαC(u,uα) +
n∑

α=1

n∑
β=1

λαλβC(uα,uβ) (2.35)

Minimizing Equation 2.35 with respect to the weights yields the following SK system
of equations:

n∑
β=1

λβC(uα,uβ) = C(u,uα) α = 1, . . . , n

The adopted model of coregionalization provides all the required information in
order to solve the kriging equations. As a result, these weights account for closeness
of the data to the point of estimation and the redundancy between data locations.

By construction, the kriging weights yield the minimum error variance between
the true data, Y (u) and the estimate, Y ∗(u),

σ2
SK = C(0) −

n∑
α=1

λαC(u,uα)

Ordinary Kriging

Within the region of interest, the mean value of an attribute may vary locally and
may be unknown. OK accounts for this by limiting the region of stationarity to
within the neighbourhood centered at the location of interest [28], so

µ(u) = µ(uα), ∀α = 1, . . . , n

Recall that SK requires that the mean is known and stationary, no such assump-
tions are made in OK, hence the kriging estimate in Equation 2.32 becomes

Z∗(u) =
n∑

α=1

λαZ(uα) + (1 −
n∑

α=1

λα)µ(u) (2.36)

The unknown mean is filtered by applying the following constraint

n∑
α=1

λα = 1 (2.37)

which simplifies the OK estimate to
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Z∗(u) =
n∑

α=1

λαZ(uα) (2.38)

The kriging system of equations is then obtained by minimizing the estima-
tion variance, subject to the constraint in Equation 2.37. In order to solve this, a
Lagrangian parameter of 2µ is used and the Lagrangian function, Q(u), becomes:

Q(u) = σ2
E + 2µ

(
n∑

α=1

λα − 1

)
(2.39)

The optimal weights are obtained by minimizing Q(u), which requires that the
partial derivatives be taken with respect to the weights and the Lagrangian param-
eter:

∂Q(u)
∂λα

= 0 =
n∑

α=1

λαC(uα,uβ) − C(u,uα) + µ

∂Q(u)
∂µ

= 0 =
n∑

α=1

λα − 1

The OK system of equations then becomes

n∑
β=1

λβC(uα,uβ) + µ = C(u,uα) ∀α = 1, . . . , n

n∑
α=1

λα = 1

This results in a system of n+1 equations with n+1 unknowns. Solving this system
of equations yields the optimal weights under the imposed constraint.

Kriging for Multiple Variables

For multiple data types, the formalism is referred to as cokriging. The following
development is consistent with simple cokriging.

Consider estimating the primary variable Y ∗
i (u) using P data types (where i can

be any one of the P variables):

Y ∗
i (u) =

P∑
p=1

np∑
α=1

λαpYp(uαp)

The cokriging system of equations consists of
∑P

p=1 np equations:
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P∑
q=1

nq∑
β=1

λβqC(uαp,uβq) = Cip(u,uαp), ∀p = 1, . . . , P ;α = 1, . . . , np

The corresponding estimation variance is

σ2
E = Cii(0) −

P∑
p=1

np∑
α=1

λαpCip(u,uαp)

In the general case of multiple variables at multiple volume scales, consideration
must be given to the generalized cokriging equations. A thorough treatment of this
system of equations along with a numerical example is provided in Appendix B.

Remarks on Kriging

One of the characteristic properties of kriging is that it is an exact interpolator.
An estimate at a sample data location will result in the exact value of the sample
data; the weights assigned to the other data is zero, and a weight of 1 is assigned
to the data at the estimate location. A second notable property is that it is an
unbiased estimator (Equation 2.34). Kriging is often referred to as the best linear
unbiased estimate (BLUE); it is considered “best” in the sense of minimization of
the expected squared error.

There is however an undesirable effect produced from kriging. Estimating an
intermediate point between two high values will lead to a high estimate and show
no indication of the potentially low-valued region in between. Kriging produces
maps that are smoother than the reality, thus introducing a higher degree of spatial
correlation than actually exists.

2.1.7 Simulation

The literature in this area is extensive. For numerical modeling of natural phenom-
ena, there are numerous simulation algorithms that are available. These techniques
include Gaussian, indicators, p-field, direct, simulated annealing, etc. By far, the
most common and simplest methods are the Gaussian-related simulation algorithms.
The main part of this section will focus on the different approaches to Gaussian sim-
ulation, and a brief discussion is provided on a few of the other simulation methods.

In classical geostatistics, simulation requires the definition of a conditional cu-
mulative distribution function(ccdf) and Monte Carlo simulation (MCS) from this
ccdf. The kriging estimate and variance are used to estimate local ccdfs. The main
difference between sequential simulation and kriging is that simulation uses both
simulated locations and data locations to determine the kriging weights. This al-
lows the covariance between the simulated values to be correct [17]. Monte Carlo
simulation is straightforward; the discussion in this section will be limited to differ-
ent types of simulation approaches.
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Gaussian Simulation

Gaussian simulation is one of the simplest geostatistical simulation algorithms, and
for this reason, it is the most commonly used method in practice. This technique is
dependent on the characteristics of a Gaussian or normally distributed variable and
an assumption of multiGaussianity. This assumes that the multivariate distribution
is also Gaussian, thus it must follow a very particular functional form:

f(Z) =
1

(2π)n/2|Σ|1/2
· exp

[−(Z − µ)′Σ−1(Z − µ)/2
]

(2.40)

where Z is a random vector of n random variables [Z1, . . . , Zn]′, Σ is the n × n

covariance matrix, and µ is a 1×n matrix of the means of each random variable Zi

[35].
The advantage of the multivariate Gaussian (or normal) distribution is that all

conditional and marginal distributions are also Gaussian, which are fully defined
by knowing only the mean and variance. This is what makes Gaussian simulation
so simple and popular in practice. Monte Carlo simulation of the resulting ccdf
provides the simulated value at a particular location. Simulation honours the local
data, reproduces the histogram and spatial continuity, and allows for uncertainty
assessment [17, 28, 40].

Important characteristics of the multivariate Gaussian distribution are linearity
and homoscedasticity. As with most other geostatistical simulation algorithms, the
assumptions of stationarity and ergodicity are applicable.

There are four common implementations of Gaussian simulation: moving av-
erage, turning bands, matrix and sequential. The sequential approach is widely
applied in practice. A brief description of each approach is provided below. In all
cases, data transformation prior to and after the simulation is required to ensure
the input data are indeed Gaussian variables (Section 2.1.2).

Moving Average. The premise for this approach is to simulate the RF as a
moving average [49]. If the covariance of a RF can be expressed as a convolution
product of a weight function, f , with its transpose, then the RF can be simulated
using this technique [7, 15]. In practice, it may be difficult to determine f . This
technique requires (1) a second order stationary RF, X(u) with known covariance
Cx(h), (2) use of a Fourier transform, F , such that Cy(h) = Cx(h)∗F , where Cy(h)
is the covariance of the second order stationary RF of interest, Y (u).

The general procedure to perform a conditional simulation:

� Define a second order stationary RF X(u) with E{X(u)} = 0 and correspond-
ing Cx(h).

� Define RF Y (u) such that Y (u) is a weighted average of X(u).

Y (u) =
n∑

α=1

f(uα)x(uα)

Luster shows the above expression yields the covariance of Y (u), Cy(h) [49].
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� Perform deconvolution on F to get weighting function f .

F = Cy(h)Cx(h)−1

� Go to each node, and calculate the unconditional simulated value, zuc(u), by
applying the weighting function to the surrounding data.

A special case of this method occurs when X(u) is a uniform random variable
(with Cx(h) defined by nugget model), and the variogram of Y (u) is a spherical
model with range a, the weight function f is found to be constant. This amounts to
the case where all nodes within a diameter equal to the range is given equal weight.
The simulated node is then calculated as the equal weighted average of all X(u)
found within the range.

The resulting simulated values may require a post-processing rescaling to ensure
a standardized normal distribution (with zero mean and unit variance). Note further
that this process yields an unconditional simulated value, which can be conditioned
via the following equation

zs(u) = z∗k(u) + [zuc(u) − z∗uc(u)] (2.41)

This second step of conditioning the simulation essentially requires that kriging
be performed twice: (1) using the data values, to get z∗k(u), and (2) using the
unconditional simulated values at the same location as the data to get z∗uc(u). The
simulated value, zs(u), at each node is calculated as in Equation 2.41, where zuc(u)
is the unconditional simulated value obtained above (in general procedure).

Using this simple conditioning equation, notice that at the data location, zuc(u) =
z∗uc(u) and the simulated value is simply the data value - as it should be. Beyond the
range of correlation, z∗k(u) and z∗uc(u) will equal the global mean, and the simulated
value will equal the unconditional simulated value, zuc(u).

Moving average methods are infrequently used due to high CPU requirements,
especially if the number of nodes to be averaged is large. This is particularly true
for the variogram models that reach the sill asymptotically, such as the exponential
and the Gaussian variograms.

Turning Bands. In this implementation, the simulation space is populated with
N lines uniformly distributed in a unit sphere. For a 3-D simulation, each of the
N lines is assigned a 1-D realization based on the 1-D covariance of the variable
[40]. The 1-D covariance is calculated by taking the partial derivatives of the 3-D
covariance, C(s):

C1(s) =
∂

∂s
sC(s)

where s = |h| in one dimension [40, 49].
This 1-D realization can be generated using the moving average technique. Each

line contributes equally to the total simulated value. The simulated value is then
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calculated as the sum of the N line contributions divided by
√

N (to standardize
the variance) (Equation 2.42).

It follows from this that the more lines used in the simulation, the more complex
the simulation, but the better the RF covariance reproduction. Generally, 15 lines
or more are used to define the 3-D space [40, 49]. Specifically, the procedure for this
technique is:

� Generate N lines uniformly distributed in a sphere.

� For each line, generate a 1-D realization using the 1-D covariance of the vari-
able.

� At each location, the contribution of each line is summed:

zuc(u) =
1√
N

N∑
i=1

zi(u) (2.42)

This technique generates an unconditional realization with an isotropic vari-
ogram model. Simulating geometric anisotropy requires repeated application of the
algorithm for a 1-D, 2-D and a 3-D isotropic variogram or covariance. The simulated
value is then a sum of four simulated covariance models multiplied by its variance
contribution (the 1-D, 2-D, 3-D isotropic variograms and a nugget model) [40].

Conditioning a turning bands simulation is done in the same manner as the
moving average approach (see Equation 2.41).

Matrix Simulation. This approach is often referred to as LU simulation [3, 16]
based on the fact that any matrix that is symmetric and positive definite can be
decomposed via Cholesky decomposition [11], which results in a special case where
LT = U, where L is the lower triangular matrix, U is the upper triangular matrix,
and the superscript T denotes the transpose of the matrix.

A large covariance matrix, C (consisting of the covariance between data to data,
node to node and data to node), is defined that accounts for the entire simulation
grid.

C =
[

C11 C12

C21 C22

]
where C11 is the n× n data to data covariance, C12 is the n×N data to grid node
covariance, C21 is the N × n grid node to data covariance, and C22 is the N × N
node to node covariance. Note that C12 = CT

21. Since covariance matrices satisfy
the requirement for symmetry and positive semi-definiteness, then it is possible to
solve for its L or U matrix (getting either L or U will automatically give the other,
since one is the transpose of the other).

C = LU =
[

L11 0
L21 L22

] [
U11 U12

0 U22

]
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Once the laborious task of getting L is completed, unconditional simulation is
simply a matter of matrix multiplication of the L22 with an N × 1 column vector,
ω, of independent normal deviates:

y = L22ω

Note that in the case of an unconditional simulation, the covariance matrix, C,
consists only of the node to node covariance matrix, C22. Checking the expected
value between y and yT shows that the covariance matrix between the simulated
locations, C, is reproduced.

E{yyT } = E{LωωTLT }
= LE{ωωT }LT

Since

E{ωiωj} =
{

1, if i = j,∀i, j = 1, . . . , N
0, otherwise

(2.43)

Then

E{yyT } = LILT = LU = C (2.44)

Thus, drawing a different vector of random normal deviates produces a different
realization. The realization can be conditioned using Equation 2.41, which is the
same procedure as applied for the moving average and the turning bands algorithms.
Alternatively, Davis proposed decomposing a larger covariance matrix to give the
following matrix multiplication for generating a conditional simulation all in one
step [16]:

y = Lω[
y1

y2

]
=
[

L11 0
L21 L22

] [
ω1

ω2

]
where y1 is an n × 1 column vector of the normal scores of the conditioning data,
y2 is an N × 1 column vector of required simulated values, ω1 = L−1

11 y1, and ω2 is
an N × 1 vector of independent normal deviates. Substitution of L−1

11 y1 for ω1 into
the above system yields

y2 = L21L−1
11 y1 + L22ω2

As before, the generation of a different realization only involves drawing another
N × 1 vector of random normal deviates for ω2. This approach is CPU intensive,
but it is particularly efficient if the grid is relatively small (less than a few hundred
nodes) and a large number of realizations is required. It does not use a search radius.
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Sequential Approach. This simulation approach is common, and the simplest
technique [32]. This approach amounts to the application of Bayes Theorem to
decompose the multivariate distribution into a series of conditional distributions for
each location.

In sequential simulation, all previously simulated nodes are added to the data
for determination of the ccdf at the next location, and MCS is used to draw from the
ccdf defined by kriging. The simulated value, zs(u), is a sum of the kriged estimate,
z∗sk(u) , and a residual value, rs(u), that is drawn from a N(0,σ2

sk(u)) distribution
where σ2

sk(u) is the kriging variance.

zs(u) = z∗sk(u) + rs(u)

Essentially, the simulated value is drawn from a N(z∗sk(u) ,σ2
sk(u)) distribution.

For practical applications, computational time may be reduced if the number of
data used in the estimation (including previously simulated nodes) is limited. The
only potential drawback is that restricting the number of data in kriging may cause
the covariance to be poorly reproduced at large distances. Use of a multiple grid
simulation can mitigate this effect [71].

The actual simulation consists of the following steps (note the steps listed below
do not include the required pre- and post-processing step of data transformation):

1. Determine a random path visiting each node in the grid.

2. At each node:

(a) Using nearby data and any previously simulated grid nodes, perform
kriging to construct a conditional distribution (normally distributed with
mean and variance given by kriging).

(b) Draw a simulated value from this conditional distribution.

3. Repeat Step 2 until all locations have been simulated.

Repeat this procedure for multiple realizations. Use of a random path avoids any
artefacts in the simulated values as a result of the regular path chosen [21, 32, 54].

Multivariate Gaussian Simulation. There are several implementations of mul-
tivariate Gaussian simulation. Simultaneous simulation of multiple variables at
multiple locations can be achieved using a large LU decomposition [3, 16]. This
essentially is an extension of the LU decomposition for one variable, and involves
decomposing a covariance matrix that accounts for multiple variables [28].

Simulation of multiple variables at multiple locations can also be performed in a
sequential manner via the common sequential Gaussian simulation [32]. Typically,
the first variable is simulated, and then the second variable is simulated using the
first variable as secondary information.

The primary advantage of the sequential technique over LU simulation is com-
putational effort. For a large grid, the full covariance matrix is large and Cholesky
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decomposition of this large matrix is computationally expensive. Moreover, numer-
ical precision limits the matrix size to 5-10 thousand.

An important decision in multivariate modeling is the choice of the model of core-
gionalization (Section 2.1.4). Adoption of either the LMC or the simpler Markov
model will affect the variography component of the model construction. The re-
sulting variogram model(s) provide the required information to define the necessary
covariance matrices.

Alternative Non-Gaussian Simulation Approaches

There are many other stochastic simulation techniques that exist in modern geo-
statistics. In particular, three non-Gaussian simulation techniques are briefly de-
scribed in this section: indicator, p-field, and direct simulation.

Indicator Techniques. Outside of the Gaussian framework, indicator approaches
are among the most commonly used methods [36]. The indicator transform for a
continuous RV, Z is

I (u; z) =
{

1, if Z(u) ≤ z
0, if Z(u) > z

with mean and variance given by

E{I(u; z)} = p

σ2 = p(1 − p)

The indicator transform is determined at a number of different thresholds. A vari-
ogram model is fitted for each threshold, and is interpreted as the transition prob-
ability for that threshold. Sequential indicator simulation (SIS) follows the same
steps as the sequential Gaussian approach above. The main difference lies in the de-
termination of the local conditional distributions. In SIS, the ccdfs are determined
by kriging each threshold to obtain an estimate of the transition probability. The
probabilities from all thresholds forms the ccdf, from which a simulated value will
be drawn via MCS.

Since kriging is performed for multiple thresholds at each location, the SIS al-
gorithm is more computationally expensive than the Gaussian method which only
requires solving only one kriging system to determine the ccdf. On the other hand,
the SIS approach allows non-parametric determination the ccdf, without the re-
quirement for any multiGaussian assumptions.

P-field Simulation. Probability field (p-field) simulation [25] dissociates the
stochastic simulation process into two components: (1) determination of the local
conditional distributions via geostatistical estimation techniques, and (2) generation
of a stochastic uniform random field with a prescribed correlation structure, that is,
the correlated p-field. At each grid location, a realization of the RV is drawn using
the probability value and the known local cdf.
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The main advantage of this simulation technique is speed [68]. The initial step
of identifying the conditional distributions can be performed using kriging. This
step only has to be performed once. The second step of generating the p-field is
generated by unconditional simulation of the random field. Problems associated
to the simulation include the occurrence of local extremas near conditioning data
[60, 68], and increased spatial continuity at short scale distances [60].

Direct Sequential Simulation (DSS). The idea of direct simulation is to gener-
ate realizations without transforming the data, that is to simulate the data directly.
The basic algorithm follows the sequential approach to simulation [80].

There are several reasons for diverging from the common Gaussian simulation.
Direct simulation allows for direct accounting of multiscale data. Use of the krig-
ing equations to determine the conditional distributions in conventional Gaussian
simulation does not permit reproduction of non-stationary features, such as the pro-
portional effect (wherein the variability of the variable depends on its magnitude)
or heteroscedasticity. Use of a rescaled variance (to account for the local mean) in
DSS should be able to account for the proportional effect [57].

The main obstacle in this approach is the inference of the shape of the condi-
tional distribution. Knowing only the kriged estimate and variance does not provide
sufficient information regarding the conditional distribution (unless the variables are
Gaussian). Recent publications have focussed on this portion of the simulation pro-
cess [8, 10, 66, 18, 59].

Most recently, Deutsch et. al. proposed the identification of conditional distri-
butions using normal quantile transformations [18, 59]. The transform between the
global histogram in original space and its normal transform is well understood. In
Gaussian space, the conditional distributions associated to a certain mean and vari-
ance are easy to obtain. The idea then is to perform a reverse quantile transform of
the conditional distribution from Gaussian space to find its counterpart in original
data space. Using this approach, a database of conditional distributions (in original
space) can be prepared. This database can then be used to simulate in direct space
without the requirement for data transformation.

2.2 Multivariate Statistics

The preceding sections described some of the key concepts in multivariate geosta-
tistical theory. Restrictive linear models have resulted in simplified approximations
for practical purposes. As a result, the practice of multivariate geostatistics is a
balancing act between simple implementation, computational time constraints and
adherence to theoretical foundations.

There are many multivariate statistical tools that have been relatively untapped
in geostatistical theory development and application. The following sections provide
an overview of multivariate statistical techniques that have considerable potential
for use in a geostatistical framework.

The first class of techniques are dimension reducing methods that includes prin-
cipal components analysis (PCA) and factor analysis (FA). These seek to simplify
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the multivariate problem by reducing the dimension of the data. Another class of
approaches is data transformation. In particular, alternating conditional expecta-
tion (ACE) is discussed. The next group of techniques are classification techniques
that include both discriminant analysis and cluster analysis. These approaches focus
on the classification of data into groups.

2.2.1 Dimension Reduction Methods

These techniques aim to reduce the dimension of the data, thus simplifying the mul-
tivariate problem. The two primary approaches are principal components analysis
and factor analysis. The development of the former technique is credited to the
work of Pearson in 1901 and Hotelling in 1933, while the concept of factor analysis
first originated with work by Spearman in 1904 and 1926 [43].

Principal Components Analysis. The basis for principal components analy-
sis (PCA) is the transformation of correlated variables into uncorrelated variables
called principal components. The principal components, Yj, j = 1, . . . , P , are linear
combinations of the original variables, Zi, i = 1, . . . , P .

Yj =
P∑

j=1

aijZi,∀j

Spectral decomposition of the covariance matrix of the original variables yields
its eigenvectors and eigenvalues. The P ×P matrix of coefficients aij , i, j = 1, . . . , P
is called the transformation matrix and is the matrix of eigenvectors. Since the
covariance matrix is a positive definite matrix, all the eigenvalues are positive and
are interpreted as the variance of the principal components. The importance of a
principal component is derived directly from the rank of the eigenvalue, that is, the
largest eigenvalue corresponds to the principal component with maximum contri-
bution to the variance of the original data and is referred to as the first principal
component. If the variability of the data can be adequately captured by considera-
tion of only the first few principal components, then the dimension of the original
multivariate problem is reduced.

One consequence of calculating uncorrelated variables that maximize the vari-
ance is sensitivity to outliers. Outliers inflate the variance of the data; therefore,
the principal components may not be representative of the true underlying variable.

Past geostatistical experience with PCA includes indicator kriging and simula-
tion using principal components [69, 70], the study of spatial correlation of principal
components [27], and general inclusion in multivariate geostatistics literature [76].

Factor Analysis. The goals of factor analysis (FA) are similar to those of PCA: to
reduce the dimension of the data by finding uncorrelated variables. The uncorrelated
variables are referred to as factors in this approach. Unlike PCA where the principal
components are linear combinations of the data, FA defines each random variable
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Zi, i = 1, . . . , P as a linear combination of K underlying and unobservable factors
(where K < P ), fk, k = 1, . . . ,K which are common to all P variables, plus an
independent “error” term, εi, i = 1, . . . , P , specific to Zi.

Zi − µi =
K∑

k=1

likfk + εi i = 1, . . . , P

where lik is the factor loading on the kth factor for the ith variable.
This technique is dependent on several key assumptions: (1) the common factors,

fk, k = 1, . . . ,K, are assumed to be uncorrelated with zero mean and unit variance;
and (2) the specific “error” term εi, i = 1, . . . , P has a mean of zero and is assumed
to be independent of the common factors and each other. No assumption is made
about the variance of the specific term. Arising from these assumptions is another
fundamental difference between the two methods: factor analysis is based on a
specific statistical model while PCA is not based on any statistical model [51].

Since both the common and specific factors are uncorrelated with each other,
the covariance between the RVs Zi are explained solely by the factor loadings, lik.
Furthermore, if Zi, i = 1, . . . , P are standardized random variables, the correlation
between two variables Zi and Zj is given by:

rij =
K∑

k=1

likljk (2.45)

Thus, two variables are highly correlated if the factor loadings for both variables
are high for the same factors [12, 51]. For this reason, factor analysis is associated
with finding the factors that contribute to maximal covariance while PCA is con-
cerned with finding components that contribute to maximal variance. In the case of
i = j, Equation 2.45 quantifies the amount of the variance of Zi that is accounted
for by the K common factors; this sum of squares of the loadings on the K factors
of Zi is referred to as the communality on Zi [35].

Common estimation methods such as the principal component method and max-
imum likelihood method are used to determine the initial common factors and the
specific factors [35]. Once determined, analysis of the communalities and specific
loadings may require that the factors be rotated to simplify interpretation of these
new variables. Factor rotation finds new factors that describe the data equally
well, and are linear combinations of the initial factors. Rotation may be orthogonal
(producing uncorrelated factors) or oblique (resulting in correlated factors).

Remarks. From the previous sections, we note that PCA is a variance-oriented
technique while FA is covariance-oriented. There exists a very specific statistical
model within the FA approach, while PCA is not dependent on any particular model.
The solution obtained from PCA is unique and exact; while FA produces several
possible solutions, owing to the available options in factor extraction and rotation
methods. This makes PCA a more attractive technique to most statisticians.

Furthermore, Seber (1984) notes that factor analysis is not suitable for cate-
gorical data [64] and attempts at non-linear FA have resulted in some theoretical
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and practical difficulties [43]. Due to the slight differences in the methods, there
is considerable confusion between the techniques in the literature. Overall though,
PCA is more commonly applied while factor analysis seems to remain popular in its
founding discipline of psychology.

It is important to note that although PCA and FA produce uncorrelated vari-
ables, the variables are neither independent nor Gaussian. The place of these meth-
ods in geostatistics may be limited to reducing the number of variables to simulate.
Undoubtedly, reducing the dimension of the problem will simplify inference of the
coregionalization model, which is often the most cumbersome task in multivariate
geostatistics.

2.2.2 Data Transformation Methods

This section focuses on the transformation of one set of variables to another set
that simplifies both analysis and simulation. Although the techniques discussed in
the previous section could also be considered data transformation techniques, the
distinction is made in that this group of methods does not attempt to reduce the
dimension of the problem.

There are many univariate transformation techniques, including the normal score
transform (Section 2.1.2), power law transformation, orthogonal polynomials, etc.;
however, multivariate transformation techniques are not so abundant. A robust
non-parametric multivariate transform called alternating conditional expectation
is discussed. Other methods are not presented here such as data re-expression
[49, 50] and logratio transformation [2] for removal of constraints in multivariate
distributions. The latter transform is commonly used to account for the constant
sum constraint, which is typical of percentage data and ratios wherein all variables
are constrained to sum to 100% or 1.0, respectively [2, 49, 50]. In the instance
where all the constituent variables are not available to sum to 1.0, one idea may be
to create a remainder variable to absorb the missing proportion. This is commonly
referred to as a “remaining-space” type of transformation [1, 22, 49]. The stepwise
conditional transformation for transforming non-Gaussian multivariate distributions
to multiGaussian distributions will be developed later in Chapter 3 [46, 49, 62].

Alternating Conditional Expectation (ACE). The alternating conditional
expectation (ACE) algorithm was first introduced by Brieman and Friedman (1985)
[9], as a non-parametric transformation that requires no assumption about the func-
tional form of the multivariate distribution.

We begin by defining RVs Y,Z1, . . . , ZP , where Y is a response variable and
Z1, . . . , ZP are the predictor variables. Arbitrary functions θ(Y ), φ1(Z1), . . . , φP (ZP )
with zero mean corresponding to these variables are also defined. The theoretical
basis of the algorithm assumes the distributions for RVs Y,Z1, . . . , ZP are known,
and E{θ2(Y )} = 1. Regression of θ(Y ) is performed using

∑P
i=1 φi(Zi). The fraction

of the variance not explained by regression is quantified as:
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e2(θ(Y ), φ1(Z1), . . . , φP (ZP )) =
E
{

[θ(Y ) −∑P
i=1 φi(Zi)]2

}
E{θ2(Y )} (2.46)

Optimal transformations are chosen as those that minimize Equation 2.46 with
respect to all functions θ(Y ), φ1(Z1), . . . , φP (ZP ).

The ACE algorithm is an iterative procedure that is used to find the optimal
transformations θ∗, φ∗

1, . . . , φ
∗
p. In the bivariate case, the optimal transformations,

θ∗ and φ∗
1, minimize:

e2(θ(Y ), φ(Z)) = E{[θ(Y ) − φ(Z)]2} (2.47)

which is equivalent to maximizing the correlation between Y and Z, ρ∗(Y,Z). In the
multivariate case, this method is aimed at finding the optimal transformations that
make the relationship between θ(Y ), φ1(Z1), . . . , φP (ZP ) as linear as possible. This
facilitates the application of conventional geostatistical techniques (which assume a
linear relationship between the model variables).

For illustrative purposes, 200 data values were generated using the model y =
exp(1+2x)+ε, where x is U(0,2) and ε is N(0,10). Figure 2.6 shows the cross plots
between the original data, the predictor variable and its transform, the response and
its transform, and the transformed response vs. the transformed predictor. Clearly,
the bivariate distribution of the transformed variables is more linear than that of
the original variables. Non-linearity between the original variables has been removed
without assuming the form of the data distribution.

Thus far, applications in geostatistical simulation are limited, although ACE has
been applied in reservoir characterization to integrate seismic data [82], to estimate
permeability from well logs [29], and to model surfaces [84].

2.2.3 Classification Techniques

Up to now all the techniques have been concerned with finding an alternate set
of variables that can be used to simplify geostatistical modeling. In this section,
we shift to methods that are useful in grouping data to form different populations.
Identification of different populations may be useful in improving assumptions of
stationarity.

Discriminant Analysis. Discriminant analysis involves two types of multivariate
data: (1) a set of groups with known distribution, and (2) a set of data with no
a priori information about the group to which it belongs [26]. The objective of
discriminant analysis is to reconcile the second type of data with the first type based
on the different observations on each sample. In a geological context, this technique
may be useful to determine the properties that characterize different facies or rock
types. Based on these properties, samples taken from unidentified facies can be
classified. This could be used in subsequent geostatistical analysis.
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Figure 2.6: ACE Transformation of y = exp(1 + 2x) + ε, where x is U(0,2) and
ε is N(0,10). Crossplots showing original y vs. x (top left), transformed x vs. x
(top right), transformed y vs. y (bottom left), and transformed y vs. transformed
x (bottom right).
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Figure 2.7: Use of (a) linear and (b) quadratic discriminant analysis to separate
groups of data. Source: Seber (1984)

The first step in discriminant analysis is to represent the observations that clearly
fall within the different πi, i = 1, . . . , G groups. Once done, this set of data then be-
comes the measure by which the groups are characterized. For example, data known
to be sampled within a certain facies, say sandstone, would belong to the sandstone
group. Likewise, samples taken within shale would be grouped and identified as the
shale facies group.

The second step is to determine the variables that best discriminates between
the two or more groups. The focus is now shifted to finding the right measure to
classify the unknown data. Many techniques exist that classify the data based on
different criteria; these include linear discriminant analysis, classification by nearest
neighbour methods, classification into one of several groups and classification using
Mahalanobis distances. Seber (1984) provides a schematic illustration of the linear
and quadratic discriminant analysis techniques (Figure 2.7) [64].

The cost of misclassifying the data is another important concept in discriminant
analysis. The determination of the right classification rule is an optimization prob-
lem wherein the cost associated to classifying a sample to the wrong group must be
minimized.

The suitability of classification rules depends on the data distributions, the cost
associated to misclassification, and the goals of the classification rules (ranging from
minimizing the number of samples misclassified to reducing the actual error rate for
classifying future samples).

Discriminant analysis is concerned with assigning samples to pre-established
groups [12]. Unfortunately, it will not help identify new groups. In practice, the ben-
efits of applying discriminant analysis to geostatistical applications may be limited
to classification of incomplete samples to known facies groups.

Cluster Analysis. At the start of any study, little may be known about the data
or the population(s) from which they came. The main objective of cluster analysis is
to identify groups within a set of data with n samples on which there are P -variate
observations. The groupings identify samples that are similar based on the P -variate
observations and distinguish them from those that are dissimilar. Each sample is
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Figure 2.8: Clustering data into groups. Source: Chatfield & Collins (1980)

assigned to one group only and is considered dissimilar to samples belonging to other
groups.

Cluster analysis is not limited to the separation of data samples, we could also
cluster variables so that highly correlated variables are grouped together so that
some combination of the variables could be used in analysis [12]. We have already
seen this type of clustering in the dimension reducing methods of Section 2.2.1, and
so the following discussion will focus on the clustering of samples.

Clustering of data samples can be achieved via agglomeration or division [51].
Consider that the analyst wishes to work with m clusters or groups for a total of
n data samples, where m < n. The process of agglomeration requires that at the
start of analysis, each sample forms its own group of one. Groups that are close
to each other are then combined to form a single group. This is done until all the
individual samples are placed into m groups. Alternatively, the process of division
begins with only one group, to which all samples belong. Samples that are far apart
are then divided, this continues until the m groups are formed and all samples have
been accounted for. Chatfield & Collins (1980) provides schematic illustrations of
clustering of samples based on two variables, x1 and x2(see Figure 2.8).

If we continued to perform cluster analysis within the first set of groups and
identify sub-groups within the groups and so on, then the result is a hierarchical
clustering scheme. This scheme essentially breaks down the primary groups into
secondary groupings, until eventually each sample is its own group which essentially
amounts to clustering by division. Figure 2.9 shows a schematic illustration of a
hierarchical tree (commonly referred to as a dendrogram), also taken from Chatfield
& Collins (1980).

The decision to combine or divide groups is based on distance measures between
the data and the group centres, which may be dependent on the means, variances
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Figure 2.9: Hierarchical clustering: dendrogram or hierarchical tree. Source: Chat-
field & Collins (1980)

and covariances of the two different populations. Metric distance measures are those
which are strictly positive. Some common distance measures include Euclidean,
Mahalanobis, Penrose, and Minkowski distance [23, 24, 35, 51, 67].

The main differences in the large number of cluster analysis algorithms lies in
the choice of (1) the clustering process and (2) the distance measure applied.

Remarks. Cluster analysis may be useful in identification of rock types for rock
type modeling. Discriminant analysis may be applied to classify incomplete samples
to known rock types. Once rock types are identified and all samples are accounted
for, modeling of continuous variables (e.g. grades or petrophysical attributes) can
proceed via geostatistical simulation.

Both discriminant and cluster analysis should provide insight into the potentially
different populations found within the data set. Decisions of stationarity may be
applicable only to the individual groups identified using these techniques.

40



Chapter 3

Stepwise Conditional
Transformation

The stepwise conditional transformation provides an alternative to the conventional
normal score transform when multiple variables are considered for Gaussian simu-
lation. This Chapter addresses the theoretical development of the technique, and
explores the model of coregionalization associated to the new transformed variables.

The stepwise conditional transformation technique was first introduced by Rosen-
blatt in 1952 [62]. It is identical to the normal score transform in the univariate
case. For bivariate problems, the normal scores transformation of the second vari-
able is conditional to the probability class of the first variable. Correspondingly, for
n-variate problems, the nth variable is conditionally transformed based on the first
n − 1 variables, that is,

Y ′
1 = G−1[F1(z1)]

Y ′
2 = G−1[F2|1(z2|z1)]

...
Y ′

n = G−1[Fn|1,...,n−1(zn|z1, . . . , zn−1)]

where Zi, i = 1, . . . , n are the original variables and Y ′
i , i = 1, . . . , n are the corre-

sponding stepwise conditionally transformed variables. Note that Y ′
i refers to the

stepwise conditional variables, while references to Yi (that is, no superscript prime)
denotes the conventional normal score transformed variables.

Figure 3.1 shows the steps to accomplish this conditional transformation for two
variables. The primary variable is normal score transformed to yield Y ′

1 ; note that
for the primary variable only, Y ′

1 is the same as Y1. The secondary data, Z2, are
binned into probability classes based on the paired primary data value, Y ′

1 . Each
subset of secondary data is then normal score transformed. Since the grouping of
secondary data is based on probability classes of the primary data, subsetting based
on the original primary variable, Z1, or the transformed primary variable, Y ′

1 , will
yield the same results. Transformation of three or more variables requires increased
conditioning, but the procedure is just as straightforward as the bivariate case.

The result of this transformation is zero correlation between the transformed
variables at h = 0.
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Figure 3.1: Schematic illustration of stepwise conditional transformation of two
variables, Z1 and Z2, with Z1 as the primary variable: (a) normal score transform the
primary variable, Z1; (b) partition Z2 data based on classes of Y ′

1 ; (c) perform normal
score transform of each class of Z2; (d) crossplot stepwise conditional variables to
show bivariate Gaussian distribution with approximately zero correlation.
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C(Y ′
i (u), Y ′

j (u)) = C ′
ij(0) = 0, for i �= j, i = 1, . . . , n; j = 1, . . . , n

Since each class of data is independently transformed to a normal distribution, corre-
lation between Y ′

2 and Y ′
1 is removed. The marginal distribution of each transformed

variable is Gaussian by construction. Moreover, all multivariate distributions are
Gaussian in shape at distance lag h = 0. This combination of zero correlation and
multivariate Gaussianity are sufficient conditions for independence of the stepwise
conditional variables (SC scores). Consequently, the simulation of a multivariate
problem may not require cosimulation due to independence of the transformed vari-
ables.

By conditionally transforming the data, new variables are created that have
no straightforward physical interpretation. The multivariate spatial relationship of
the original model variable is not transformed (that is, no modification of bivariate
spatial distributions Z(u) and Z(u+h), or trivariate distributions Z(u), Z(u+h1)
and Z(u + h2), etc.).

The original multivariate distribution is honoured by back transformation via a
reverse quantile transform. Back transformation of the nth variable is conditional
to the values of the first n − 1 variables. For example, Z1 can be determined from
Y ′

1 with the correct conditional distribution; from the back transformed Z1 and the
simulated value of Y ′

2 , Z2 can be calculated; and so forth.
Figure 3.2 shows two mining examples for oil sands data and nickel laterite data.

For each sample dataset, cross plots are shown for the original data, conventional
normal score transformation, and stepwise conditional transformation. For the oil
sands data, the cross plot of the normal scores shows an almost linear bivariate distri-
bution with negative correlation. Application of the stepwise conditional transform
yields a bivariate Gaussian distribution with almost no correlation. Conventional
normal scores transformation of the nickel laterite data shows a positively corre-
lated bivariate distribution that appears slightly heteroscedastic; while the stepwise
conditional scores show a bivariate Gaussian distribution with essentially zero cor-
relation.

Figure 3.3 shows two petroleum related examples which are referred to as the
“Two Well” data and the “East Texas” data. The bivariate distributions after a
direct normal scores transform are clearly more problematic than those obtained
using the mining data. The normal scores cross plot on the left is heteroscedastic,
while the cross plot on the right is non-linear and constrained in some fashion. After
applying the stepwise conditional transformation, the bivariate distributions again
exhibit a bivariate Gaussian distribution with essentially zero correlation.

Note that after stepwise conditional transformation, there are slight deviations
from perfect bivariate Gaussian distributions in both Figures 3.2 and 3.3. This
is particularly evident in the oil sands and the Two Well example. For the oil
sands, there is evidence of spatial structure in the low values of the transformed
bitumen (%bitumen < −1.28); for the Two Well data, structure is apparent for the
transformed porosity at high values (φ ≥ 1.28). These remnant structures reflect the
structures within the classes (first and last class for the oil sands and the Two Well
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Figure 3.2: Comparative illustration of cross plots of the original data (top), normally
transformed data (middle) and the stepwise conditionally transformed data (bottom) for
Oil Sands data (left side) and Nickel Laterite data (right side).
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Figure 3.3: Illustration of cross plots of the original data (top), normally transformed
data (middle) and the stepwise conditionally transformed data (bottom) for porosity and
log(permeability) for East Texas data (left side) and the Two Well dataset (right side).
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data, respectively). The transformation removes the correlation between classes, but
does not account for the correlation within a class.

Once transformed, there are several approaches to multivariate geostatistical
simulation of the stepwise conditional scores. As mentioned, the cross covariance at
h = 0 is zero by construction; however, the cross covariance at h > 0 may not be
zero. There are two possible options for fitting the cross covariance C ′

ij(h), h > 0
at large scale:

1. Assume independence for all lag distances after confirmation by calculating
an experimental cross variogram or cross covariance, that is

C(Y ′
i (u), Y ′

j (u + h)) = C ′
ij(h) = 0, for i �= j,∀h

2. Model C ′
ij(h) consistent with a valid linear model of coregionalization (LMC).

The first option is simplest. Calculation of C ′
ij(h), i �= j will identify if further

modeling of the cross covariance is required due to significant departures from in-
dependence.

The significant advantage of this method is that complex multivariate distribu-
tions are transformed to the well behaved Gaussian distribution. For example, non
linear, heteroscedastic and constraint features (see Figure 1.1) are automatically
built into the transformation.

3.1 Model of Coregionalization

It is of theoretical interest to understand the model of coregionalization implicit
to the stepwise conditional transformation, and the conditions under which the
assumption that all cross covariances at all spatial scales are zero, C ′

ij(h) = 0, i �=
j,∀h are appropriate.

Transformation by the stepwise conditional procedure leads to an implicit model
of coregionalization. The model of coregionalization is embedded within the trans-
formation and back transformation. The model of coregionalization can always be
understood numerically via simulation and calculation. This may be important for
complex situations; however, for certain simple cases, an analytical examination
may provide insight to this implicit model.

The stepwise conditional transformation of the primary variable is identical to its
normal score transform. As a result, the covariance structure of the primary variable
is the same as the covariance calculated from the conventional normal scores, that
is, C ′

11(h) = C11(h).
Conditional transformation of the secondary variable results in Y ′

2 �= Y2, hence
the covariance structure of Y ′

2 is different from that of Y2. To gain a better under-
standing of the differences between these two covariance structures, a small analyt-
ical exercise was carried out. Two points separated by a distance h were considered
(see Figure 3.4). At each point, Y1 and Y2 data are available. Both the original
variables, Y1 and Y2, are homoscedastic, multi-Gaussian variables with univariate
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Figure 3.5: Conditional distribution of the secondary variable, Y2(u) with condi-
tional mean, µ2|1(u) and variance, σ2|1(u).

N(0,1) distribution. Further, the covariance structure between Y1 and Y2 is defined
analytically by a valid linear model of coregionalization ( LMC) (Section 2.1.4).

Transforming the secondary variable conditional to the primary variable results
in the following transform expression,

Y ′
2(u) =

Y2(u) − µ2|1(u)
σ2|1(u)

(3.1)

where µ2|1 and σ2|1 are the mean and standard deviation of the conditional distribu-
tion, respectively, of the conditionally transformed Y ′

2 . Figure 3.5 shows a schematic
illustration of the conditional distribution of the secondary variable, Y2(u), given
Y1(u). Note that the transform given in Equation 3.1 is simply a standardization
of the ccdf of Y2(u) given Y1(u) to be standard normal (that is with zero mean and
unit variance).

The covariance model of the transformed secondary variable, Y ′
2 , is given:

C ′
22(h) = E{Y ′

2(u) · Y ′
2(u + h)}

= E

{(
Y2(u) − µ2|1(u)

σ2|1(u)

)
·
(

Y2(u + h) − µ2|1(u + h)
σ2|1(u + h)

)}
(3.2)

To determine the covariance structure of the transformed secondary variable, C ′
22,

the local conditional distributions must first be defined.
The mean and standard deviation of the conditional distribution, µ2|1(u) and

σ2|1(u), are known in the case of multiGaussian variables. In fact, all conditional
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distributions are Gaussian with known mean and standard deviation. The mean
and variance are only needed to calculate the covariance structure and are given
by solving the kriging system of equations; these are given by the kriged estimate
and the error variance, respectively. Note that in this particular case, kriging is not
being used in the conventional sense of estimation, but rather the system of equations
yields the parameters of the ccdf exactly for the multiGaussian case [28, 40]. The
simple kriging (SK) equations for this system are:

µ2|1(u) =
2∑

α=1

λαY1(uα) = λY1(u) + λ′Y1(u + h) (3.3)

σ2
2|1(u) = σ2

E = C22(0) +
2∑

α=1

2∑
β=1

λαλβC11(uα,uβ) − 2
2∑

α=1

λαC12(u,uα)(3.4)

Minimization of the error variance (Equation 3.4) yields the normal equations:

2∑
α=1

λαC11(uα,uβ) = C12(u,uα) (3.5)

For the two points shown in Figure 3.4, the system of equations consists of

λC11(0) + λ′C11(h) = C12(0) (3.6)
λC11(h) + λ′C11(0) = C12(h) (3.7)

where λ is the weight given to Y1(u), λ′ is the weight given to Y1(u+h), C11(h) is the
covariance between Y1(u) and Y1(u+h), and C12(h) is the cross covariance between
Y2(u) and Y1(u + h). Note that for standard Gaussian variables, C11(0) = 1 and
C12(0) = ρ(0) = ρ. So Equations 3.6 and 3.7 becomes:

λ + λ′C11(h) = ρ (3.8)
λC11(h) + λ′ = C12(h) (3.9)

Solving equations 3.8 and 3.9 yields the following SK weights:

λ =
ρ − C12(h) · C11(h)

1 − C11(h)2
(3.10)

λ′ =
C12(h) − ρ · C11(h)

1 − C11(h)2
(3.11)

These weights are then substituted into Equations 3.3 and 3.4 to obtain the mean
and variance of the conditional distribution:

µ2|1(u) = λY1(u) + λ
′
Y1(u + h)

µ2|1(u) =
(

ρ − C12(h) · C11(h)
1 − C2

11(h)

)
Y1(u) +

(
C12(h) − ρ · C11(h)

1 − C2
11(h)

)
Y1(u + h)(3.12)
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σ2
2|1(u) = C22(0) −

{
λC12(0) + λ

′
C12(h)

}
σ2

2|1(u) = 1 −
(

ρ − C12(h) · C11(h)
1 − C2

11(h)

)
C12(0) −

(
C12(h) − ρ · C11(h)

1 − C2
11(h)

)
C12(h)(3.13)

Similar expressions for the conditional mean, µ2|1(u + h), and standard deviation,
σ2|1(u + h), of Y ′

2(u + h) can be determined using the two data for Y1.
Substitution of µ2|1 and σ2|1 into equation 3.2 shows that the covariance structure

of the conditionally transformed variable, Y ′
2 , implicitly incorporates the direct and

cross-covariance structure of the original variables, Y1 and Y2. The new model
of coregionalization implicitly invoked via the stepwise conditional transform is a
function of the original variable covariance structures, that is,

C ′
11(h) = C11(h)

C ′
12(h) = g(C11(h), C12(h), C22(h))

C ′
22(h) = f(C11(h), C12(h), C22(h))

where f and g are different functions of the direct and cross covariance structure of
the original variables. C ′

12(h) can be assumed to be zero, after numerical verification.

Intrinsic Coregionalization. For the special case of an intrinsic coregionaliza-
tion, that is when C22(h) = C11(h) and C12(h) = ρ12(0) ·C11(h) = ρ ·C11(h), C ′

12(h)
is zero, the SK weights in Equations 3.8 and 3.9 become:

λ = ρ

λ′ = 0

The mean and variance of the conditional distribution reduce to

µ2|1(u) = ρY1(u)

σ2
2|1(u) = 1 − ρ2

So the conditional distribution of Y ′
2 for the intrinsic case is N(ρY1(u), 1 − ρ2),

which agrees with the conditional distribution obtained by applying Bayes law on
the conditional expectation of two standard multiGaussian variables.

Using the mean and variance of the conditional distribution, the covariance
model of the transformed variable can be determined:
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C′
22(h) = E{Y ′

2(u) · Y ′
2(u + h)}

= E

{(
Y2(u) − ρY1(u)√

1 − ρ2

)
·
(

Y2(u + h) − ρY1(u + h)√
1 − ρ2

)}

=
1

1 − ρ2
E {[Y2(u) − ρY1(u)] · [Y2(u + h) − ρY1(u + h)]}

=
1

1 − ρ2

{
C22(h) − 2ρC12(h) + ρ2C11(h)

}
=

1
1 − ρ2

{
C11(h) − 2ρ(ρC11(h)) + ρ2C11(h)

}
=

1
1 − ρ2

{
C11(h) − ρ2C11(h)

}
=

C11(h)(1 − ρ2)
1 − ρ2

= C11(h) (3.14)

So the covariance structure for the transformed secondary variable, Y ′
2 reduces

to the covariance structure of the primary variable, Y1. The cross covariance for the
intrinsic coregionalization case, C ′

12(h), is zero for all distances. This theoretical re-
sult is validated in the numerical exercise below. Note that this is an “extreme” case
of the model of coregionalization implicit to the stepwise conditional transformation.

Numerical Exercise. The result of applying this transformation is independence
of the transformed variables at h = 0, since each class of Y2 data is independently
transformed to a standard normal distribution. There is no guarantee of indepen-
dence for distance lags greater than zero (h > 0). The new model of coregional-
ization is complex. As shown above, the assumption of C ′ij(h) = 0,∀h, i �= j was
only demonstrated for the case of an intrinsic coregionalization. To validate this
theoretical result, a numerical exercise was performed involving two multi-Gaussian
variables, Y1 and Y2, with the same direct isotropic variogram consisting of a com-
bination of two spherical models with a range given by a:

γ(h) = 0.5Spha=3(h) + 0.5Spha=15(h)

The correlation between Y1 and Y2 was chosen to be 0.70. Three different cross var-
iograms were considered: “short-range”, “intrinsic”, and “long-range”. The “short-
range” case gives maximum variance contribution to the short range structure; while
the “long-range” case gives maximum variance contribution to the long range struc-
ture. Note that maximum variance contribution refers to the maximum contribution
allowable under the LMC. The cross semivariogram models are given below and il-
lustrated in Figure 3.6.

short − range : γ(h) = 0.50Spha=3(h) + 0.20Spha=15(h)
intrinsic : γ(h) = 0.35Spha=3(h) + 0.35Spha=15(h)
long − range : γ(h) = 0.20Spha=3(h) + 0.50Spha=15(h)
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Figure 3.6: Direct semivariogram of Y1 and Y2 (left), and the three different cross
semivariogram models (right) : short-range (top left, dash), intrinsic (middle, solid),
and long-range (lower right, dash).

For each case, stepwise conditional transformation was applied, direct and cross
variograms were calculated and modeled, sequential Gaussian simulation was per-
formed, simulated values were back transformed, and the resulting simulated direct
and cross variograms were examined. Figure 3.7 shows the direct variograms for Y ′

2

and the cross variogram of Y1 and Y ′
2 , following application of the stepwise trans-

form.
In the short-range scenario, the cross variogram is slightly higher than zero over

small lag distances and then returns to zero. Conversely, the long-range scenario
shows that the cross variogram is negative over the short-range. For these two cases,
fitting a cross semivariogram model to the structures is challenging; the thick solid
line in each figure shows the dampened hole effect model that was fitted to the simu-
lated results. Unlike the two extreme cases, the intrinsic case showed independence
of the transformed pairs, with no deviation from zero over all lags. As predicted by
theory, independence at h > 0 is satisfied for the intrinsic case.

Comparison of the analytical result in Equation 3.14 with the numerical results
shown in Figure 3.7 for the intrinsic case shows that the numerical result deviates
only slightly from the analytical solution. This deviation can be attributed to ergodic
fluctuations.

Following simulation, the values were back transformed and the cross variogram
was checked for each scenario. Figure 3.8 shows the model cross variograms of
the original variables and the average cross variogram obtained after simulation of
the conditionally transformed variables. The range of correlation is approximately
preserved, i.e., the short range model produces an average cross variogram with the
shortest range of the three simulated scenarios. As well, the variogram structure of
the extreme cases (short- and long-range cross variograms) are shifted towards the
intrinsic model, since this is the model that has been implicitly assumed.

The direct variograms of the resulting secondary variable were also examined
and showed a shift in the direct model towards the opposite extreme in order to
produce an overall shift in the cross variogram towards the intrinsic case. Thus,
in the short range cross variogram scenario, the direct variogram for the resulting
simulated secondary variable showed that greater variance contribution was given
to the long range structure. This yields an overall shift in the cross variogram to
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Figure 3.7: Direct semivariogram of Y ′
2 (left) and cross semivariogram of Y ′

1 and
Y ′

2(right), after stepwise conditional transformation for the short range (top), in-
trinsic (middle) and long range (bottom) scenarios. The (thin) solid black line on
the cross semivariograms represent the cross semivariogram model used to create the
unconditioned simulation prior to transformation; while the thick solid black line on
the cross semivariograms show the dampened hole effect model that was fitted.
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Figure 3.8: Input model of cross variogram of Y1 and Y2 (left), and the average cross
variogram obtained after simulating with stepwise transformed variables Y ′

1 and Y ′
2

(right). In both cases, the variograms follow the same line code: short-range (top
left, dash), intrinsic (middle, solid), and long-range (bottom right, dash).

be closer to the intrinsic case. Conversely, the long range cross variogram scenario
resulted in a direct variogram that gave greater variance contribution to the short
range structure. This results in a cross variogram that is shifted closer to the
intrinsic model. Only the intrinsic case showed no shift in the direct variogram of
the simulated secondary variable.

3.2 Links to “Cloud” Transform / P-field

The stepwise conditional transformation bears some similarities to a “cloud” trans-
form that is sometimes used in the modeling of petrophysical properties for reservoir
characterization. Core porosity and permeability are usually available and typically
used to establish the bivariate relationship between porosity and permeability. Log
data are also typically available and are deemed to be more reliable for conditioning
of 3-D models. Porosity is first simulated using the log data.

A 3-D model is also required for permeability. The cloud transform modeling of
permeability proceeds in two steps: (1) generate a 3-D correlated random field of
probabilities, and (2) draw a simulated value for permeability using its collocated
porosity model value to determine the conditional distribution of permeability [5].

The first step in permeability modeling is essentially one part of the p-field sim-
ulation algorithm (Section 2.1.7). Recall that in p-field simulation, the parameters
for the local conditional distributions are defined by kriging the 3-D grid using the
available data. A probability field is generated for the same 3-D grid that has some
spatial correlation. These probabilities are used to draw from the local conditional
distributions that were previously obtained from kriging. In this way, the simulated
values are spatially correlated and are also conditioned to the data. Similar to p-
field simulation, a 3-D correlated random field of probabilities are required for the
cloud transform:

� Determine the conditional distribution of permeability. This is based on the
collocated porosity that is available from the initial step of modeling porosity,
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Figure 3.9: Schematic illustration of cloud transform for petrophysical modeling:
(1) Based on porosity value at location u, determine the corresponding conditional
distribution from the bivariate distribution of core porosity and permeability, (2)
Draw a simulated value of permeability using the probability from the correlated
random field of probabilities.

and the bivariate distribution of the core porosity and permeability (Step 1 in
Figure 3.9).

� Draw a simulated value from the conditional distribution of permeability, using
the probability at that location (from the p-field) (Step 2 in Figure 3.9).

The link between this “cloud” transform approach and the stepwise conditional
transformation lies in the use of the global bivariate distribution to determine con-
ditional distributions. In practice, the conditional distributions are constructed
by binning the data. Where the cloud transform simply draws from the conditional
distribution, the stepwise conditional transform approach does a normal score trans-
formation of the same conditional distribution. Both methods will reproduce the
bivariate distribution, but the stepwise transform approach has the potential for
modeling permeability independent of porosity. This is contrasted with cloud trans-
form of permeability where the p-field is independent of porosity, but conditioning
this field to local data is not trivial (see Section 2.1.7).
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3.3 Remarks

Conditional transformation of the data results in transformed secondary variables
that are combinations of multiple “real” variables. Consequently, the associated
covariance structure of the secondary transformed variables implicitly incorporates
the direct and the cross covariance structure of the original variables. Thus, a new
model of coregionalization is implicitly invoked in the covariance structure of all
transformed secondary variables.

Although all discussions thus far have assumed that the multivariate data are
continuous variables, this technique does not preclude application to categorical or
discrete data. In fact, the stepwise transform can be performed on continuous,
categorical, or a combination of both categorical and continuous data.

In practice, however, discrete data in the natural resources industry are geo-
logical codes. Similarly, well log samples may be coded with different categorical
values to differentiate the lithofacies from which the samples were extracted. Data
found within different rock types typically have different statistical, as well as struc-
tural, properties. Consequently, stationarity decisions are applicable only within
rock types, and each rock type should be independently modeled to reflect its distri-
bution and continuity structure. In this context, the stepwise conditional transform
is not a favourable alternative to making appropriate stationarity decisions to sub-
divide the domain into more homogeneous subzones.

The next chapter will explore some of the practical details of implementing the
technique. Specifically, the following issues will be addressed:

� Data related issues, including the effect of outliers and spikes, on the forward
and back transformation.

� The requirement for sufficient data and the specification of number of classes
are closely related issues.

� The proposed application of a smoothing algorithm to infer a reliable condi-
tional distribution when there are insufficient data to proceed with the trans-
form.

� The transformation order that should be adopted in order to preserve the
spatial continuity of the original variables.
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Chapter 4

Considerations for Real Data

There are a number of different considerations for the application of the stepwise con-
ditional transform to real data. The following issues are important: (1) data-related
issues, (2) number of data and classes, (3) inference of multivariate distributions in
presence of sparse data, and (4) ordering of variables for transformation.

4.1 Data Related Issues

This section addresses potential errors in the data, the possibility of outliers, spikes,
spatial clustering of the data and missing data.

Errors and Outliers. Sampling errors are common as a result of the data col-
lection process and/or the recording of observed measurements. The result of such
errors may lead to outliers such as anomalously high values in an otherwise low-
valued distribution or vice versa.

A nickel laterite data will be used to study the effect of outliers on the simulation
results of stepwise conditionally transformed variables [48]. Only two variables will
be examined: Ni and Fe. This data was minimally cleaned by the removal of
three outliers. In the back transformation stage of the workflow, simulated values
are interpolated in the transformation table to return the simulated value to the
units of the original data. Outliers extend the domain of this interpolation. As a
result, the crossplots of back transformed values show a bivariate distribution that
reproduces these outlier values with a number of interpolated values, which may be
inappropriate. Figure 4.1 shows the comparison of the original data distribution
(uncleaned and cleaned) and the resulting back transformed simulated values for Ni
and Fe.

Note that in Figure 4.1, the simulated crossplot of the uncleaned data does not
show exact reproduction of some outliers. In particular, the data pair with Ni = 5.1
and Fe = 71.0 is not reproduced. This is attributed to an implementation issue in
sequential Gaussian simulation (SGS) in which the data are assigned to grid nodes
to speed up the simulation. In these cases, if there is another data that is closer
than the outlier to the centre of the same grid node, then the outlier data will not
be assigned and hence will not be reproduced exactly.
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Figure 4.1: Effect of outliers on the reproduction of the bivariate distribution of
a nickel laterite dataset. The crossplots of the uncleaned data (top left) and the
cleaned data (top right) are compared with the crossplots of the corresponding
simulated results in the bottom row.

Exploratory data analysis should reveal any outliers. In some cases outliers may
be “legitimate” data, that is, these data may represent a true phenomena such as
anomalously high gold grades in a vein type deposit. In other cases where out-
liers result from sampling errors, these problematic data should be removed prior
to transformation to avoid simulating features that are not truly part of the miner-
alization.

Spike of Constant Values. It is common to encounter some proportion of values
that are constant. In mining, this constant value may be attributed to low values
below some detection limit. Most literature refers to this effect as either a spike
[20, 73, 75], the zero effect [13, 40], or an atom at the origin of a histogram [13].

The presence of a spike results in a quantile transform that is not unique [20];
despiking becomes an important issue. This issue is important for any quantile
transform [13]. Figure 4.2 shows a schematic illustration of the basic idea behind
“despiking” or “breaking the ties”.

Random despiking is the simplest solution [20], which simply involves adding
a small random component to the constant values and sorting them accordingly.
Verly proposed a despiking approach by taking local averages around the constant
values, and ranking them based on these averages [75, 73].

In this aspect, the main concern for the stepwise conditional transform is the
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Figure 4.2: Schematic illustration of tie breaking to despike a distribution for quan-
tile transformation.

presence of a large proportion of spikes at the border of two classes. For example,
if the proportion of zeroes is 27 % and the probability threshold between the first
and second class is 0.20, then the issue arises as to which 7% of the 27% constant
values should be categorized to the second probability class (see Figure 4.3).

Back transformation is sensitive to despiking. In order to reproduce the con-
ditional distributions, the constant values must be back transformed to the same
class as originally assigned in the forward transformation. This may occur if the
transformation and back transformation are performed outside of the simulation
program. Experience has shown that in these instances, numerical precision in the
transformation table may damage reproduction. Ideally, the transform should be
integrated into the simulation algorithm and performed internally so as to maintain
consistency in precision and hence class assignment.

Clustering and Non-Representative Data. It is common in natural resources
exploration to take more samples in interesting or important areas. Depending on
the attribute of interest, these areas may correspond to high or low valued regions.
The equal weighted statistics of these clustered samples are not representative of
the population to be modeled.

Declustering tools, such as polygonal and cell declustering, are applied to mit-
igate the effect of preferential sampling on the histogram and summary statistics
[20]. The resulting histogram is simply the original data with weights that differ
from the original equally weighted distribution. Note that declustering does not
remove outliers from the dataset, the sample may be given lower weights, but the
outlier is still present and will have an effect on the transformation. This declustered
distribution often becomes the reference or target distribution to be reproduced by
simulation.

Since a quantile transform can be applied on any univariate distribution, the
transformation itself cannot correct for a non-representative distribution as a result
of clustering. Consequently, declustering should be a consideration prior to appli-
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Figure 4.3: Despiking issue associated to class thresholds for stepwise transforma-
tion. This occurs when the proportion of spikes or constant values (e.g. 27% or
0.27) overlaps a class threshold (e.g. 20%) that differentiates between conditional
distributions.

cation of this and any other quantile-based transformation methods. The stepwise
conditional transformation should be applied on the distributions that are deemed
to be representative of the domain to be modeled.

4.2 Number of Data and Class Specification

There must be sufficient data to reliably identify each conditional distribution used
for transformation. Otherwise, the transformation may be unreliable and artifacts
could be introduced in the back transformation.

The reliability of a distribution depends on the available number of samples, that
is, a distribution defined by a large number of data is considered to be more reliable
than a distribution that is based on few samples. For stepwise transformation,
the number of data required increases as a power of the number of variables to
transform. There is no general rule, however, 10N to 20N data, where N is the
number of variables, would permit each distribution to be discretized into 10-20
classes with a minimum of 10-20 data [44].

Number of Classes. As the number of classes increase, the number of data
per class will decrease. To illustrate the sensitivity of the transformation to the
number of classes, consider porosity and permeability taken from the “Two Well”
dataset from Chapter 1. There are approximately 1800 well log samples available.
For Gaussian variables, zero correlation is a sufficient condition for independence.
Depending on the available data and the number of classes specified, the tendency
of the correlation coefficient towards zero will be examined. Correlation coefficients
for number of classes from 1 to 10 and 15 to 50 in increments of 5 were calculated.
Figure 4.4 shows the relation between the number of classes and the correlation
coefficient. We can see that the correlation tends to zero as the number of class
increases, flattening off at around 10 classes.
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Figure 4.4: Change in correlation between the stepwise conditionally transformed
variables as the number of probability classes changes for the Two Well data. Cross
plots for the SC variables when the number of class equals 1, 5, 15 and 50 are shown.
There are approximately 1800 original paired data.

Note that specifying one class for transformation is identical to performing inde-
pendent normal score transformation for each variable. Thus the correlation for one
class is the same as the correlation between the normal scores of the two variables.

As well, some non-linear features remain evident in some of the crossplots after
transformation. In particular, the crossplots corresponding to 5 and 15 classes show
slight departures from the independent bivariate Gaussian distribution at high and
low values. Although the stepwise conditional transformation removes correlation
between the transformed variables, it does so by removing correlation between the
classes. There is no control on the correlations within the classes, and so these
departures may result.

Furthermore, it is evident that a banding effect becomes more apparent as the
number of classes increase. This results from the number of data found within a
conditional distribution, that is, as more classes are specified, fewer data can be
found within each class and approximately the same number of data are in each
class. Recall from the normal score transform (Section 2.1), that if the number of
data within each class is the same, then the normal scores of one class to the next
are exactly the same (see Equation 2.5) [48].
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Figure 4.5: Differences in transformed secondary data due to class partition: the
same original value for Z2 may have different transformed values depending on the
partitioning of the primary variable, Y ′

1 to obtain the conditional distributions to
be transformed.

Determination of Class Partitions. The classification of data is based on parti-
tioning the standard normal distribution. The thresholds are chosen to correspond
to equal probability intervals. Depending on the primary data, the conditional
transformation of secondary variables may result in the presence of artifacts in the
transformed distribution. For example, two identical secondary data values should
have the same transformed values (Y ′

2). However, if the corresponding primary data
belong to different probability intervals, then transformation may produce signifi-
cant differences in the secondary variable Y ′

2 (Figure 4.5).
There is no requirement for the classes to be established based on equal proba-

bility intervals; they can also be calculated based on equal data value intervals or
even user-specified intervals. For these two cases, the practitioner may encounter
some artefacts as a result of insufficient data to define a specific conditional class,
especially in the case of skewed distributions.

Dynamic Class Expansion. To mitigate the effect of a poorly defined condi-
tional distribution due to few data, an option is to allow dynamic class expansion.
This expansion occurs when a minimum number of data are not found within the
class thresholds.

Figure 4.6 shows dynamic class expansion as it applies to the transformation
of two and three variables; the method works for any number of variables. The
current implementation expands the class by half an interval on either side of the
two threshold values for each variable, effectively increasing the class size to twice the
size of one regular class. This process occurs iteratively until the minimum number
of data are found. In practice, the class expansion is typically only applied on the
third or fourth variable, depending on data availability. Reducing the expansion to
a smaller fraction of the class size would avoid large overlaps between classes; this
is straightforward to implement and costs little in terms of computational effort.
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Note that the purpose of class expansion is to identify a more reliable conditional
distribution for the class. The only data that are transformed using this reference
distribution are the actual data found within the initial class thresholds. The next
section discusses an alternative to dynamic class expansion which is to smooth the
multivariate distribution to allow transformation with sparse data.

4.3 Transformation in Presence of Sparse Data

There must be sufficient data to identify all conditional distributions in the step-
wise transformation. Sparse data leads to erratic and nonrepresentative conditional
distributions. Sparse data could be supplemented by a smoothing algorithm to “fill-
in” gaps in the raw-data multivariate distribution [45]. This is an alternative to the
class expansion approach presented in Section 4.2.

Smoothing using kernel densities is robust and flexible [63]:

f̂(x) =
1
nh

n∑
i=1

K

(
x − xi

h

)
(4.1)

where n is the number of data, h is the bin width obtained by partitioning the
range of the data (that is, between the minimum and maximum observed values)
[34], K(·) is a kernel function associated to some specified density function. Since
we are primarily concerned with discretizing the bivariate distribution, the kernel
density is chosen to be a non-standard bivariate Gaussian density distribution with
specified correlation:

fxy =
1

2πσxσy

√
1 − ρ2

· e
−1

2(1−ρ2)
·
(

(x−mx)2

σ2
x

− 2ρ(x−mx)(y−my)

σxσy
+

(y−my)2

σ2
y

)

where mx and my are assigned the paired data values, σ2
x and σ2

y are user-specified
variances associated to the two variables, and ρ is the correlation coefficient. Note
that the above density function is the bivariate representation of Equation 2.40.

The general approach is to discretize the 2D space of a bivariate distribution into
a grid to be populated with frequencies. A bivariate density distribution centered
about each data pair is generated. The result is a “cloud” of values centered about
the data . The size of this “cloud” is based on the variance specified by the user;
for practical purposes, the variance can be determined empirically (typically 0.05
to 0.15). Further, the correlation coefficient of the kernel densities is typically set
to the global correlation of the normal scores transform of the variables (since the
kernels are chosen to be multivariate Gaussian). Figure 4.7 shows the effect of
these two parameters on the bivariate kernel that is generated at a data point.
The calculated frequencies are then averaged to obtain density estimates at each
location within the grid. Discretizing the bivariate distribution for the stepwise
conditional transformation will then be accomplished using this smoothed bivariate
distribution. The basic steps in smoothing using a kernel estimator with a user
specified correlation coefficient, ρ, and variance for each variable, σx and σy, are as
follows:
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Figure 4.6: Schematic Illustration of dynamic class expansion for equal probability
partitioning to obtain minimum number of data: (a) bivariate case only requires
expansion of probability class of the primary variable, (b) trivariate case, transfor-
mation of third variable requires class expansion of both the primary and secondary
variable. In both cases, the size of the class is shaded in gray (original class definition
(left) and expanded class (right)).
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Figure 4.7: Effect of correlation and variance on bivariate kernel generated centered
about a data pair. The first two plots (left and middle) show the effect of increasing
variance, while the last two plots (middle and right) show the effect of changing the
correlation coefficient. Note that a larger variance generates a larger “cloud” and
allows for greater smoothing, while a larger correlation makes this “cloud” more
linear.

1. Using the scatterplot limits for both variables, discretize the scatterplot to
create a regular grid of X and Y values.

2. Go to each data pair:

� Set mx = x and my = y.

� Visit each node in the new scatterplot grid and calculate the bivariate
frequency using the non-standard Gaussian density function.

3. Average all the calculated frequencies at each node.

The data should first be transformed into normal scores. Using the normal
score values of the multivariate data, we smooth the bivariate distribution of the
normal scores, then perform the stepwise conditional transformation on the original
data and the smoothed distribution. Independent simulation of the model variables
can now proceed in Gaussian space. Back transformation of the simulated values
is implemented by calling on the univariate and the multivariate transformation
tables.

This methodology was applied to a small petroleum related dataset consisting
of only 27 data pairs of porosity and log(permeability). The correlation of the nor-
mal scores porosity and normal scores log(permeability) is 0.857, so this was the
correlation specified for the kernels. The variance of the kernels was selected as
0.05 for both porosity and log(permeability), σ2

φ = σ2
logK = 0.05. Figure 4.8 shows

several comparative cross plots. The two cross plots of the stepwise conditionally
transformed variables resulting from (1) only the data, and (2) the smoothed distri-
bution have similar correlation magnitudes, but with opposite signs. Simulation and
back transformation of the transformed variables according to the smoothed distri-
bution shows good reproduction of the bivariate distribution. The banding effect
that is visible in this crossplot is a consequence of back transforming values within
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Figure 4.8: Small petroleum dataset consisting of only 27 samples. Cross plot of
the original data (top left), cross plot of the stepwise conditionally transformed data
using only the original 27 data values (top right), cross plot of stepwise conditionally
transformed data using the smoothed distribution (bottom left), and a cross plot of
the simulated values after back transformation (bottom right).

a sparsely defined class - smoothing in this instance does not fully compensate for
defining a class with only two data points. The choice of a larger kernel would be
required with the inevitable tradeoff of more smoothing (see Figure 4.7) [46].

The challenge of sparse data is not a limitation of the stepwise conditional trans-
formation; all multivariate techniques require data. The limitation of working with
isotopic sampling (Section 4.4), however, could preclude use of this transformation
procedure.

4.4 Effect of Ordering

Consider two variables Z1 and Z2. Two possible scenarios exist for transformation:
(1) choose Z1 as primary variable and normal score transform to get Y1, and then
transform Z2 to get Y2|1; or (2) choose Z2 as the primary variable to get Y2, and
then Z1 is transformed to produce Y1|2. Note the slight change in notation here
from that in Chapter 3, the purpose is to differentiate between the primary variable
and the conditionally transformed secondary variable. In this instance, the prime
superscript (′) is missing from the Y variables; however, the conditioning is denoted
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by the subscripts and all Y variables in this Section refer to stepwise conditionally
transformed variables.

In case (1) above, the simulation results for Y1 would be identical to those
obtained by conventional normal scores transformation of Z1, and the same can be
said for Y2 in the second scenario. Simulation of the secondary variables, either Y2|1
or Y1|2, does not produce the same results as conventional simulation. The variogram
of the secondary variable is a combination of the spatial structure of both original
variables and the cross correlation of the two. In Section 3.1, it was shown that the
model of coregionalization resulting from the stepwise transformation is complex to
define analytically. Consequently, a numerical exercise was carried out to examine
the difference in the variogram structure as a result of transformation ordering.

Unfortunately, this comparison is complicated by the fact that the variogram
of the stepwise transformed secondary variable is not directly comparable to the
conventional normal scores of the same variable. Figure 4.9 shows the following
methodology undertaken for each sequence so that the variogram models that were
compared for each variable were both the conventional normal scores variogram.
For both ordering sequences, the variogram was calculated for both the stepwise
transformed primary and secondary variable. Sequential Gaussian simulation was
independently performed and back transformation returned the simulated values to
the original units. Then, the simulated results were normal score transformed, and
the corresponding variograms were determined. A comparison of the normal scores
variograms for the same variable, when it is taken as (1) the primary variable and
(2) the secondary variable, will show the effect of ordering.

This methodology was applied to the “Two Well” and “East Texas” data. Poros-
ity and permeability were the two variables of interest. The first transformation
order takes porosity as the primary variable, and the second takes permeability as
the primary variable.

Figure 4.10 shows the comparison of the variograms for both ordering sequences
of the Two Well dataset. The variograms for porosity show that when porosity
was chosen as the primary variable, the post-simulation variograms closely follow
the input normal scores variogram - as they should. Conversely, the variograms
corresponding to the scenario in which porosity was the secondary variable shows
greater variability and a shorter range. Differences in the permeability variograms
as a result of transformation ordering sequence are not so obvious; however, the
secondary variograms for permeability have longer range.

Figure 4.11 shows the comparison of the variograms for the East Texas data.
Similar to the previous example, each scenario of ordering clearly shows departure of
the secondary variable variograms from the direct variograms using the traditional
normal scores. Unlike the Two Well example, the permeability variograms differ
considerably after stepwise transformation. Further investigation showed that the
stepwise transformation produced a secondary variable with higher nugget effect
and longer range of correlation.

Recall that in Section 3.1, shifts in both the direct and cross variograms of the
simulated transformed variables were examined in a numerical exercise. This exer-
cise showed that cross variogram models that deviated from the intrinsic coregion-
alization model would shift the cross variogram model to be closer to the intrinsic
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Figure 4.9: Methodology to examine the effect of transformation ordering on spatial
structures for one variable. The flow chart shows the methodology to examine the
spatial structure of one variable when it was taken as the primary variable (left),
and when it was taken as the secondary variable (right), which was transformed
conditional to a primary variable. The normal scores variograms, γNS1(h) and
γNS2(h), were comparable since both were in the conventional Gaussian space. Note
that although the stepwise and normal space are both Gaussian spaces, they reflect
different transformations (legend, bottom left) .
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model. This consequently results in deviations of the secondary transformed vari-
able in order to give a cross variogram structure that is closer to the intrinsic case.
Following these observations, the practitioner should first assess whether the struc-
tures of the direct variograms for the variables are similar (in type of structure, range
and variance contributions). If the direct variograms are similar, then he should de-
termine which direct variogram structure yields a closer fit to the cross-variogram
structure when it is scaled by the cross correlation coefficient. The variable that
gives the best fit should be chosen as the primary variable. This is consistent with
the example using the Two Well dataset.

In the case where the direct variograms for the original variables are dissimilar,
as in the East Texas data, the most continuous variable should be chosen as the
primary variable. Continuity of a variable can be assessed by comparing the nugget
effect, structure type and range of the variogram. Numerical examples show that
variogram mismatch was minimized by this choice. The variograms for the second
(and higher) variable often have a higher nugget effect than its corresponding normal
scores variogram.

Nonisotopic Sampling. All discussions thus far have implicitly assumed that all
data variables are available at all data locations; a situation called isotopic sampling.
Unfortunately, in practice this assumption may be unrealistic; nonisotopic samples
are common in resource valuation. In mining, nonisotopic data may arise as a result
of two different sampling campaigns (one using diamond drill holes and another
using reverse circulation drill holes), blast hole samples, and geophysical or seismic
data [77]. In conventional geostatistics, this situation prevents inference of the cross
covariance, in particular, the correlation at h = 0 cannot be determined directly [77].
Essentially, this situation amounts to inaccessibility of the multivariate distribution
at h = 0.

In turn, this presents a serious limitation of the stepwise transformation. There
are two particular issues associated to the presence of nonisotopic samples. Firstly,
if the multivariate distribution is completely inaccessible (that is, there are no col-
located data pairs), then the transform cannot be applied since there is no multi-
variate distribution to partition for transformation. Secondly, consider the situation
where the multivariate distribution is only partially informed (that is, there are
some isotopic samples), applying a multivariate transform to this data amounts to
transforming a distribution that may be non-representative.

Notwithstanding the issue of non-representativity, the latter scenario presents a
couple of possibilities for stepwise transformation. Consider locations where there
are data for Zj and no data for Zi where ni < nj and n is the number of data. The
transformation of variable Zj depends on prior transformation of Zi; therefore, at
locations where there are no Zi, those Zj data cannot be transformed. A straight-
forward solution is to choose the more densely sampled variable as the primary
variable; however, the practitioner may decide that the more sparsely sampled vari-
able is more important and so preservation of its spatial correlation is paramount.
Alternatively, the chosen or preferred variable can be transformed and simulated at
all locations. Then, the simulated primary variable can be used for later variables.
Of course, there is no unique transformed value for secondary data at locations of
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Figure 4.10: Effect of ordering using Two Well Data: normal scores variogram
using simulated data for porosity (top) and permeability (bottom). In first scenario,
porosity is taken as primary variable (left), and in the second scenario, permeability
is chosen as the primary variable (right). In all cases, the thick solid line is the
normal scores variogram model, the dashed lines correspond to the variogram of the
simulated variable. Porosity is more continuous than permeability, and the greatest
mismatch occurs when porosity is taken as the secondary variable.
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Figure 4.11: Effect of ordering using East Texas data: normal scores semivariogram
using simulated data for porosity (top) and permeability (bottom). In first scenario,
porosity is taken as primary variable (left), and in the second scenario, permeability
is chosen as the primary variable (right). In all cases, the thick solid line is the
normal scores semivariogram model, the dashed lines correspond to the variogram
of the simulated variable. Permeability is more continuous than porosity, and the
most significant mismatch in the semivariogram models occur when it is taken as
the secondary variable.
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nonisotopic sampling. This makes data analysis and inference of the variogram of
secondary data difficult.

Application of the transform is not a problem in the presence of any number of
exhaustive secondary information. Although this situation is technically the case
of nonisotopic samples, it is distinct in that the discussion above mainly referred
to the absence of collocated hard data. Exhaustively available secondary data are
considered soft data. In these instances, the exhaustive secondary data should be
chosen as the primary variable, and the hard data should be transformed conditional
to the collocated secondary data.

4.5 Remarks

The stepwise conditional tranformation removes the correlation between the vari-
ables producing independent model variables at h = 0. Cosimulation can proceed in
one of two ways: (1) assume that C ′ij(h) � 0, i �= j for h > 0, or (2) model the mul-
tiple variograms consistent with LMC. The former case simplifies the cumbersome
cosimulation process to independent simulation of the transformed variables; how-
ever, if in the latter case where Cij(h) �= 0,h > 0, then full cokriging is suggested.
Note that modeling with the LMC may be challenging given that the correlation at
h = 0 is zero (or the sill is zero).

The correlation between the variables is injected during back transformation.
This is a big advantage of transforming multiple variables in a stepwise conditional
fashion. Any adverse effects of simulating non-multivariate Gaussian variables are
mitigated by ensuring that the multivariate distributions of the transformed vari-
ables are truly Gaussian.

The covariance structure of the conditionally transformed secondary variables is
a function of the direct and cross covariance model between the original variables.
The effect of transformation ordering is observable in the departure of the semi-
variogram of the transformed variable from the original variable. This departure
can be minimized by firstly determining if the direct variograms are similar. If so,
then choose the variable that, when scaled by the correlation coefficient, provides
the best fit to the cross variogram structure; otherwise choose the most continuous
variable as the primary variable for stepwise transformation. In the presence of
sparse data, dynamic class expansion can be allowed or a smoothing algorithm can
be applied to model the conditional distributions based on the available data. The
main limitation of the technique is the absence of any isotopic samples, which would
preclude the use of this transformation altogether.

Application of the stepwise conditional transform results in a simplified work
flow for simulation of multiple variables:

1. Perform stepwise conditional transformation for multiple variables.

2. Calculate and model variograms for each of the transformed variables, and
verify that the cross covariance between the variables is close to zero for all
lag distances, i.e. C ′ij(h) � 0, i �= j for h > 0.

3. Simulate each variable independently via Gaussian simulation.
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4. Back transform in a stepwise conditional manner to obtain simulated values
in original units.

5. Check model results: univariate and multivariate distributions, and variograms.

Figure 4.12 shows the results of following the above work flow to the Two Well
data. Porosity and permeability are transformed in a stepwise conditional man-
ner. The transformed variables are modeled and simulated independently. The two
crossplots in the middle show the bivariate relationship before and after back trans-
formation. The crossplot on the left is consistent with the independent simulation
approach, while the crossplot on the right shows the reproduction of the bivariate
relationship after back transformation.
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Figure 4.12: Example of independent simulation and back transformation of porosity and
log permeability for Two Well Data: A cross section of one realization for porosity (left)
and log permeability (right) in normal space (top row), crossplot of simulated values in
normal space (middle left) and in original space after back transformation (middle right),
and corresponding cross section of simulated porosity and log permeability in original space
(bottom row). Cross plot reproduction can be compared to top right crossplot in Figure
3.3.
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Chapter 5

Case Study: Multivariate
Simulation of Red Dog Mine,
Alaska, USA

The Red Dog mine is the world’s largest Zn producer located 90 miles north of
Kotzebue, Alaska, USA, owned and operated by Teck Cominco Limited. The deposit
consists of sulphide ore zones in sedimentary exhalative (sedex) deposits, and is
characterized by the presence of multiple metals and multiple ore types. The mine
assays for as many as ten variables; the four primary ones being Zn, Pb, Fe and Ba.

A key issue is the variability within the deposit and the effect of this variability
on Zn recovery. Recovery is adversely affected by the presence of high barite and
other deleterious minerals and ore textures. The existing long term resource model
was constructed by independently kriging the four main variables.

Improved multivariate modeling of the different elements and ore types should
improve the reliability of the long-term resource model and therefore the prediction
of Zn recovery.

5.1 Background

The Red Dog Main Pit consists of three geological plates: Upper, Median and Lower.
There are a total of 31 geology codes, of which only eight will be modeled. These
eight geological rock types correspond to four different ore type units in two separate
plates.

The existing grade models were kriged at a 25ft × 25ft × 25ft ((25ft)3) resolution.
For this case study, the geostatistical models will be simulated at 12.5ft × 12.5ft
× 12.5ft ((12.5ft)3) resolution, and will later be upscaled to (25ft)3 for comparison
purposes. There are some good reasons to model at a finer scale than will be
required later. Firstly, the 12.5ft composite data are a good compromise between
retaining some of the variability of the smaller drillhole sample data and the faster
simulation of larger, and hence fewer blocks. Secondly, the simulation is essentially
a “point”-scale simulation; current implementations do not explicitly account for
volume-variance relations. Thus, simulating at a finer resolution and then averaging
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Direction Minimum Maximum Number of Cells Size of Cells
(ft) (ft) (ft)

Easting 585000 589500 360 12.5
Northing 141500 146000 360 12.5
Elevation 800 950 12 12.5

Table 5.1: Red Dog model coordinate limits.

to larger blocks will show the variability of the block grades more accurately.
Six benches were modeled to allow for model reconciliation with blast hole sam-

ples. Table 5.1 lists the coordinate limits of the conditional simulation model. These
limits essentially cover the entire areal extents of the Main pit and the vertical ex-
tents of the six benches of interest. This model consisted of a total of 1,555,200
cells.

The simulations were constructed on a by rock type basis, and all figures shown
correspond to one particular rock type. Once all rock types were simulated, the
realizations were merged and all global comparisons consisted of all rock types taken
together.

5.2 Available Data

Three types of data were made available by Teck Cominco: drillhole data, compos-
ited drillhole data and blasthole data. Multivariate geostatistical modeling consid-
ered the 12.5ft composites, while the blasthole data were used to test the predictive
ability of the resulting models.

There were a total of 9847 12.5ft composites available for the eight rock types
of interest. The term drill hole (DH) refers to the 12.5ft composites. DH data are
at a nominal 100ft × 100ft spacing.

For these same rock types, there were 58566 blast hole (BH) data available for
model validation. BH data are more closely spaced than DH data at 10ft × 12ft
spacing. Figure 5.1 shows the projection of the available data onto a plan and a
section view of both data types separately. Note that in the plan and section for
BH data, the data density is high, and the distance between the BH samples is very
small relative to the size of the field.

A geology model at (25ft)3 resolution was also available. For consistency with
the simulation models, the (25ft)3 geology model was reformatted into a (12.5ft)3

model.

5.3 Multivariate Geostatistical Simulation

Conditional simulations were performed for seven variables: Zn, Pb, Fe, Ba, sPb
(soluble Pb), Ag, and TOC (total organic content). These seven variables were
modeled for each rock type, using Gaussian simulation with stepwise conditionally
transformed variables. The main steps of the simulation are:
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and blasthole data (right).
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Transform No. Transform Order
First Variable Second Variable Third Variable

1 Zn Pb Fe
2 Zn Fe Ba
3 Zn Pb sPb
4 Zn Pb Ag
5 Zn Fe TOC

Table 5.2: Transformation ordering for stepwise conditional transformation.

1. Transform data in a stepwise conditional manner to obtain independent Gaus-
sian variables (Chapter 3).

2. Calculate and model the directional variograms for each of the transformed
variables within each rock type (Section 2.1.3).

3. Simulate transformed variables via sequential Gaussian simulation (Section
2.1.7).

4. Back transform simulated values to original units (Chapter 3).

Once all variables within all rock types were modeled, all block models were merged
to form multiple realizations of the study area for uncertainty assessment and post-
processing. All simulation related tasks were performed using GSLIB [21] and re-
lated GSLIB-compatible tools.

The need to model seven variables with only 3000 composites for any one rock
type (that is, the rock type with the most data contained only 3000 samples) poses a
problem in practice . The multivariate stepwise conditional transform would require
107 composites in order to have a minimum of 10 data per probability class. This is
impractical. A nested application of the stepwise conditional transformation is pro-
posed to overcome this problem. Accounting for a lower-dimensional multivariate
distribution was considered. Inference of a trivariate distribution would require ap-
proximately 103 or 1000 data to define the conditional distributions with a minimum
of 10 data. This is more reasonable given the number of composites available.

Recall from Chapter 4 that the transformation ordering for the stepwise con-
ditional transform will affect the reproduction of the variogram from simulation.
Thus, the most important variable or the most continuous variable should be cho-
sen as the primary variable (Section 4.4). For Red Dog, Zn is the most important
variable, and so all others will be conditioned to it. To account for the other six
variables, the following sets of transformations were proposed:

The transformation order reflects the significance Teck Cominco staff attribute to
each variable. Zn is considered to be the most important, and so all other variables
are transformed conditional to Zn. In all cases, Fe or Pb act as secondary variables,
and all remaining variables are then transformed conditional to either Zn and Pb
or Zn and Fe.
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Figure 5.2: Comparison of equally weighted Zn distribution and representative Zn
distribution.

Data Declustering. An important aspect of geostatistical simulation is to as-
semble representative distributions for each variable. Given the multivariate nature
of this dataset and the intended application of a multivariate transformation tech-
nique, declustering must be consistent between all variables. This consistency in-
volves respecting the multivariate relations and the manner in which simulation will
account for them. Multivariate dependency between all seven variables is a direct
consequence of the transformation order that will be imposed (see Table 5.2).

The representative distribution of Zn must be established by a declustering pro-
cedure using the data configuration and the volume of a particular rock type. For
this purpose, kriging within a rock type was performed; the kriging weights given to
each data were accumulated, and these weights were then used as the declustering
weights. This approach not only respects the rock type being populated (much like
nearest neighbour declustering), but it also respects the spatial variability of the
data and hence their area of influence within this rock type.

Declustering of the secondary variables (say Pb) must respect the bivariate re-
lations since these will be transformed conditional to Zn. The stepwise conditional
transform considers only those secondary data where primary data is available (that
is, at locations where there are both Zn and Pb data). As a result, the distribution
that will be reproduced in the back transformation is the isotopically sampled values
of Pb with Zn. For this reason, a bivariate calibration of the Pb distribution was
performed using both the representative distribution of Zn and the relationship be-
tween Zn and Pb. For all tertiary variables, the same rationale was applicable, and
the representative histograms for Fe through TOC were determined using the repre-
sentative histograms for the two dependent variables plus the trivariate calibration
data.

Figure 5.2 shows the comparison of the histogram of the Zn data within one rock
type and the corresponding representative histogram of Zn grade. Note there are
2634 data for the equal weighted histogram on the right. As discussed above, not all
of these are used to assemble the representative histogram of Zn; in fact, only about
half the total data are used to decluster. Declustering with the kriging weights was
applied using the rock type model to assemble the representative Zn histogram.

Only minor changes were apparent. There was no change in the data values, they
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Figure 5.4: Comparison of equally weighted Pb distribution and representative Pb
distribution.

were only weighted differently. The mean and standard deviation have decreased
slightly. The scatterplot of Pb given Zn was used to calibrate the marginal distri-
bution of the Pb to give the representative Pb distributions (see Figure 5.3). Figure
5.4 shows a comparison between the equal weighted histogram of all Pb data (using
2634 Pb data) and the representative Pb histogram. Given the positive correlation
between Pb and Zn and the slight decrease in the mean of Zn, it was expected that
the representative histogram of Pb should have a slightly lower mean than the 7.02%
reported on the equal weighted histogram; and it has indeed decreased to 6.91 %.

Stepwise Conditional Transform of Red Dog Data. Figure 5.5 shows the
scatterplots of the variables resulting from the first transform sequence of Zn, Pb
and Fe (see Table 5.2).

The transformed variables are independent and multiGaussian, which translates
to a circular shape in the crossplot. From Figure 5.5, the crossplot between the
first two variables (Zn and Pb) appears approximately circular. Crossplots with the
third variable (Fe, in this case) show some banding; however this is simply a visual

79



S
C

: P
b

SC: Zn

SC Zn vs. SC Pb

-4.0 -3.0 -2.0 -1.0 .0 1.0 2.0 3.0 4.0

-4.0

-3.0

-2.0

-1.0

.0

1.0

2.0

3.0

4.0

ρ = .013

This feature is
due to correlation

within the first
class of Zn
(Y < -1.28)

S
C

: F
e

SC: Zn

SC Zn vs. SC Fe

-4.0 -3.0 -2.0 -1.0 .0 1.0 2.0 3.0 4.0

-4.0

-3.0

-2.0

-1.0

.0

1.0

2.0

3.0

4.0

ρ = -.017

S
C

: F
e

SC: Pb

SC Pb vs. SC Fe

-4.0 -3.0 -2.0 -1.0 .0 1.0 2.0 3.0 4.0

-4.0

-3.0

-2.0

-1.0

.0

1.0

2.0

3.0

4.0

ρ = .016
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Pb and Fe. Zn was transformed first, then Pb was transformed conditional to Zn,
and finally Fe was transformed conditional to both Zn and Pb.
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artefact of having many classes and consequently fewer data within each class (see
Section 4.2).

Variogram Analysis. Spatial statistics can now be calculated and modeled for
the transformed data. The variography was determined for the transformed vari-
ables.

Figure 5.6 shows an example of variogram maps, experimental variograms and
the variogram model for Zn. Both the variogram model and the experimental vari-
ogram points are shown in the chosen principal directions. Overall, the experimental
variograms are fairly stable and the corresponding models fit the experimental points
well.

Variogram maps are a common tool used to attain a preliminary impression of
continuity directions. The maps are in radial coordinates; at the centre of the map
is location h = 0. Basically, the maps are used to visualize large scale continuity
directions and distances. These directions and distances are then further refined
during the calculation and modeling of experimental variograms.

Simulation. Sequential Gaussian simulation (SGS) was independently performed
for each of the seven transformed variables on a by rock type basis: Zn, Pb, Fe, Ba,
sPb, Ag and TOC. A total of 40 realizations were generated for each variable within
each rock type. For greater computational efficiency, only those blocks belonging to
the specific rock type were simulated (as controlled by the geology model).

Back Transformation. The simulation results must be back transformed to the
original units of the data. Similar to the forward transformation that relied on
conditioning one variable to another, the back transformation for each simulated
realization must be performed in a conditional fashion. For example, the back
transform of Fe will be conditional to the simulated values for Zn and Pb. The key
to back transformation is to maintain consistency with the forward transformation.

5.3.1 Validation of Simulation Models

A number of basic checks must be performed prior to using these models for decision
making.

An important validation is the reproduction of the input data and the variogram.
Statistical fluctuations are inherent in stochastic simulation; however, these fluctu-
ations should be reasonable and unbiased. Simulation produces simulated values
that are approximately standard normal in expected value. For any one realization,
minor fluctuations from a zero mean and unit variance are expected; however, when
these values are back transformed to original units a slight shift of the mean in
normal space may translate to a more significant shift of the mean in original units.
Similarly, the combined fluctuation of the mean and variance in normal space may
translate to more noticeable shifts in original space. This is particularly true for
skewed distributions, which is the case for most variables in the Red Dog data.

Deviations from the limit standard normal distribution could be due to a num-
ber of factors. Firstly, the algorithms employed are based on an assumption of
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stationarity. Non-stationary data can lead to shifts in the mean and/or variance of
simulated values in normal space. Secondly, Gaussian simulation techniques assume
the data are multiGaussian in a spatial context. There are no techniques to ensure
multiGaussianity in the spatial domain. To mitigate the effects of fluctuations in
normal space and its translation to original space of the data, a standard transform
is applied to the simulated values to ensure reproduction of the histogram and its
corresponding summary statistics [41]:

z2(u) = z0(u) + λ(u)[z1(u) − z0(u)] (5.1)

where

F0(z) = cdf of the simulated values
F1(z) = target cdf
z0(u) = set of originally simulated values, u ∈ A
z1(u) = corrected value based on quantile transformation alone

= F−1
1 (F0(z0(u)))

z2(u) = corrected value based on quantile transform and kriging variance
λ(u) = correction factor defined as [σK(u)/σmax]ω

σK(u) = kriging variance at location u
σmax) = max{σK(u),u ∈ A}

ω = correction level parameter, must be > 0

Use of the kriging variance in Equation 5.1 ensures that the values at data loca-
tions are reproduced. The transform is applied over individual realizations to ensure
reproduction of the global histogram for each realization. Alternatively, “sets” of
realizations can also be transformed and data would still be honoured; however, this
does not guarantee that the global histogram per realization is reproduced.

Data Reproduction. The goal is to verify that the corresponding simulated val-
ues reproduce the assigned composite values. For each variable, a crossplot showing
the DH values and their corresponding simulated values demonstrates whether in-
put data were reproduced within the numerical precision of the storage and the
transformation table being used. Figure 5.7 shows an example of the crossplot for
Zn. Over the multiple rock types and multiple variables, the composite data were
reproduced exactly in almost all cases. Deviations from the true value were a result
of the numerical precision reported in the transformation table. In general, minor
fluctuations at the high and low ends of the units were attributed to the number of
quantiles reported in the transformation table. Overall, DH data were reproduced
at their respective locations from the simulation models.

Histogram Reproduction

Another important check is the histogram of the simulated values after back trans-
formation. These distributions should be similar to the representative histograms,
with comparable statistics. Figure 5.8 shows an example of one such comparison for
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Zn. Overall, the histograms were reproduced within reasonable statistical fluctua-
tions in the summary statistics by construction (see Equation 5.1).

Over the 40 realizations (or the ensemble), the summary statistics can be checked
for reproduction. For each realization, there is a mean and a variance associated
to the resulting global distribution. A histogram of the mean from all realizations
will show if the mean is reproduced. Similarly, a histogram of the variance will
show if the global variance is reproduced. Figure 5.9 shows these two histograms
for Zn. The mean of the representative distribution was reproduced; differences in
magnitude lie in the second decimal place. As well, the distribution of variances
showed only minor differences in magnitude. This reproduction was a consequence
of the transform applied (Equation 5.1).

Variogram Reproduction. After verification that the first order statistics were
satisfactorily reproduced, the next check involved the variogram. It is important to
note that this check was performed in normal or transformed space (prior to back
transformation), since only the normal scores variogram will be reproduced. Figure
5.10 shows the results of performing this check for Zn. The variogram directions
calculated from the simulated models correspond to the standard North-South (N-
S), East-West (E-W), and vertical directions. These variograms are shown as grey
dashed lines. The variogram models were calculated in these same three directions
(although principal directions may differ) and are shown as black solid lines. The
experimental variogram points calculated from the 12.5ft composite data are also
shown, and correspond to the black dots on these figures.

Reproduction of Multivariate Features. The multivariate relations are im-
portant and must be checked. Teck Cominco was also interested to see how their
existing models “performed” for the same type of check.

In order to allow for direct comparisons between a simulation and the existing
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Figure 5.10: Variogram reproduction for Zn: horizontal maximum direction (top),
horizontal minimum direction (second), vertical direction (third), and table listing
variogram model. Black solid line represents the variogram model, and dashed lines
represent the variogram of the simulated models.
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long term model, the simulations must first be upscaled to the same volume as the
existing model. This required upscaling from (12.5ft)3 models to (25ft)3 models.
This upscaling is discussed in more detail below in Section 5.4.

Figure 5.11 shows a comparison of the crossplot reproduction from simulation
to those crossplots from the 25ft composites and the existing long term model. In
general, the simulated realizations reproduce the trivariate relations with compara-
ble variability to the 25ft composites; the corresponding plots from the existing long
term model shows similar bivariate relations but with noticeably reduced variability.

Recall that the relations between Zn and Ba was the most important for Zn
recovery. Comparing the Zn-Ba crossplot from all three sources (composites, sim-
ulation, and long term model) shows the existing model reproduced neither the
bivariate relations nor the inherent variability of the data. This result and its po-
tential impact on production supports the use of multivariate geostatistics in model
construction.

5.3.2 General Comments on Conditional Simulation Models

Once all simulated models were generated and validated on a by rock type basis, a
single realization for each variable was obtained by merging the simulated properties
from each rock type. Figure 5.12 shows a few of the simulated realizations for Zn
at the 12.5ft grid resolution.

The modeling methodology implemented in this project was quite complex.
Conventional approaches are sufficient for straightforward problems; however, for
the complexity of the Red Dog data, these common approaches are inadequate.
The availability of multiple metal grades within multiple rock types warrants some
consideration of the relationship between these grades and how these relationships
change from one rock type to the next. The approach documented in this section
was designed to explicitly address this key issue. Consequently, the resulting models
not only reproduce the univariate data and its spatial variability, but taken together,
they also honour the multivariate relations between the different metals/minerals
within the different rock types.

5.4 Validation with Additional Data

Blasthole (BH) data was intentionally excluded from the input data used for model
construction. The idea was to assess the predictive ability of the conditional sim-
ulation models using the BH data. In particular, four variables will be compared:
Zn, Pb, Fe and Ba.

Comparing BH and DH Data. The BH data were paired with the closest DH
data within a tolerance of 50ft. A total of 9846 DH composites were checked against
58560 BH data. Figure 5.13 shows the results of pairing up the BH with the DH
data. Significant banding was expected as a result of pairing the DH data with
multiple BH data.

This nearest-neighbour pairing of the BH and DH data presented the lower
bound on the expected correlation. Simulated values were generated using kriging
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Figure 5.11: Comparison of multivariate features reproduction for Zn-Pb (top row),
Zn-Fe (second row), Pb-Fe (third row), and Zn-Ba (bottom row). Crossplots using
the 25ft composites are shown on the left column, from the upscaled simulations are
shown in the middle column and those from the existing long term model are shown
in the right column.
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Figure 5.12: Simulated realizations of Zn at 12.5ft grid resolution. This section
spans elevations 862.5 to 875ft.
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Figure 5.13: Crossplot of BH data against nearest neighbour DH data for Zn, Pb,
Fe and Ba over all eight rock types. Significant banding is a result of pairing DH
data to multiple BH data.

which accounts for data redundancy, closeness, and the surrounding data values.
Having considered the spatial correlations in addition to the data values, the sim-
ulated values should be better correlated to BH data. Of course, the variogram
used in simulation will have an impact on how much better the expected correlation
should be. For instance, a higher nugget effect would reduce the correlation between
the simulated value and the BH data. Alternatively, a variogram model with a long
range and low nugget effect should increase the correlation between the simulated
value and the BH data.

Comparing BH and Conditional Simulation Models. Prior to any type of
comparative studies, the (12.5ft)3 models must first be upscaled to a resolution
comparable to the BH data, which are at 10 x 12ft areal spacing with a length
of 25ft. The models were upscaled to 12.5 x 12.5 x 25ft for consistency with BH
data. The block averaging method was a weighted average based on specific gravity
equations, provided by Teck Cominco. Figure 5.14 shows a few of the realizations
of Zn at this resolution. As a result of upscaling in the vertical direction, these
realizations appear slightly smoother than those in Figure 5.12.

Given that there were 40 realizations for the conditional simulation models for
each variable, there was the issue of which realization should be compared against

90



Simulated Zn, Realization 1

East

N
or

th

Simulated Zn, Realization 10

East

N
or

th
Simulated Zn, Realization 20

East

N
or

th

.0

5.0

10.0

15.0

20.0

25.0

30.0

Simulated Zn, Realization 25

East

N
or

th

Simulated Zn, Realization 30

East

N
or

th

Simulated Zn, Realization 40

East

N
or

th

Figure 5.14: Simulated realizations of Zn at 12.5 x 12.5 x 25ft grid resolution,
consistent with BH data. The section shown spans elevations 850 to 875ft.
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Figure 5.15: Crossplots of BH data and E-type estimate from Conditional Simulation
Models.

the BH data. Rather than choose any arbitrary realization (since all are equally
likely to be chosen), the E-type estimate was compared. The E-type estimate refers
to the expected value at each location calculated based on the local distribution
constructed using the 40 realizations. This is similar to a kriged model, since it is a
model of expected values. The effect of the variability inherent in any one realization
will be mitigated by choosing the E-type estimate.

Figure 5.15 shows the comparison between the BH data and the E-type estimate.
The crossplots show fairly strong positive correlations between the model and the
BH data, ranging from 0.62 to 0.86. Two distinct populations were apparent from
the Ba crossplot, which represented the two rock types. A comparison with Figure
5.13 shows that for all four variables, the correlation between the BH data and the
simulated values were higher than the lower bound represented by the pairing of BH
to DH data.

Determining Expected Correlations. It is possible to determine the expected
correlation coefficient between the simulation models and the BH data, given the
known DH and BH spacing, and the variogram model used to construct the simula-
tions. Figure 5.16 shows a schematic illustration of the relationship between the BH
data spacing, variogram model and the expected correlation. Use of this approach
assumed that the BH data and the DH data have the same variogram model, that
is, the spatial variability of the BH data was the same as that of the DH data. As
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Figure 5.16: Schematic illustration of relation between expected correlation and
estimation variance at BH spacing. This is calculated for multiple BH locations,
and then averaged to obtain the average estimation variance.

well, the BH data were assumed to have similar statistical properties as the DH
data.

From Figure 5.16, the key to determining the expected correlation was to first
determine the average value of the estimation variance at the BH data spacing.
Recall that the DH data are at 100 x 100ft spacing while the BH data are at 10 x
12ft spacing. As a result, BH data are interspersed between the DH data, and so
the estimation variance must be calculated at each BH location and then averaged
within the 100 x 100ft block. For the purposes of approximating this value, the
model’s 12.5 x 12.5ft horizontal spacing was sufficient for substituting the actual 10
x 12ft BH spacing.

Since the variogram models were constructed for the normal scores, the variance
is 1.0. The expected correlation is given by:

ρexpected = 1.0 − σ2
est

Figure 5.17 shows the configuration of the DH data and the block model spacing.
For simplicity, the BH data were assumed to be centered about a DH sample on
an approximate 8 x 8 grid with 12.5 x 12.5ft blocks. Kriging can be performed
on this data configuration with an appropriate variogram model to determine the
estimation variance for each of the 64 blocks. Averaging these values yields the
average estimation variance of the BH data surrounding a DH data. For example,
kriging was performed using the Zn variogram for the configuration shown in Figure
5.17. Specific DH values at the 100 x 100ft spacing were not important since we were
only concerned with the estimation variance (recall that the estimation variance is
not dependent on the data value, but rather the data locations (Section 2.1.6).

Figure 5.18 shows the histogram of estimation variances for the 64 blocks ob-
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Figure 5.17: Configuration for determining average estimation variance. DH data
are at 100 x 100ft spacing, BH data are at 10 x 12ft spacing. Set up an 8 x 8 grid
centred about a DH data, with block sizes of 12.5 x 12.5 x 25ft. Perform kriging to
determine the estimation variance at each block, and then average these to get the
mean estimation variance.

Variable σ̄2
est ρexpected ρBH−E−type

Zn 0.658 0.342 0.522
Pb 0.647 0.353 0.695
Fe 0.577 0.423 0.648
Ba 0.834 0.166 0.375

Table 5.3: Summary table for determining expected correlation coefficient for one
rock type: average estimation variance from kriging (second column), and expected
correlation coefficient (third column), and correlation between BH and E-type esti-
mate from simulation models (fourth column). For each variable, the actual corre-
lation exceeds the expected correlation.

tained from kriging and the crossplot of the BH data to the E-type estimate. From
the histogram, the mean estimation variance is 0.658. From the above equation, the
expected correlation is (1.0-0.658) or 0.342. The crossplot of the E-type estimate
and the closest BH data shows a correlation of 0.522, which exceeds the expected
correlation.

Table 5.3 summarizes the results of calculating the average estimation variance
and the corresponding expected correlation for each variable within one rock type,
and compares this with the correlation between the BH data and the E-type estimate
of the simulation models.

A comparison of the last two columns in Table 5.3 shows that for all four vari-
ables, the correlation between the E-type estimates of the models was higher than
the expected correlation determined from the variogram models. It was understand-
able that these correlations may appear unreasonably low; however, the correlations
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Figure 5.18: Calculation of expected correlation for Zn within one rock type: His-
togram of estimation variance from kriging for 8 x 8 grid centered about a DH
sample (left), and crossplot of BH data and E-type estimate (right).

Variable ρBH−LT

Zn 0.417
Pb 0.439
Fe 0.559
Ba 0.298

Table 5.4: Correlation between BH data and Long Term Model values.

obtained from the models were comparable to the expected correlation.
Similar correlations were expected from the long term model, if the comparisons

were carried out on a by rock type basis. Table 5.4 summarizes the correlation
coefficients from this type of comparison using the long term model. As expected,
these numbers were comparable to the fourth column in Table 5.3. Unfortunately,
a direct comparison of these two sets of correlation coefficients would be technically
incorrect since the expected correlations for the long term model were a function of
the variography used to construct the simulation models. The appropriate variogam
models for the long term model were not available.

Model Accuracy and Precision. Another interesting measure of model valida-
tion was to assess its accuracy and precision. In a statistical context, a model is
considered accurate if for a given symmetric probability interval p, the fraction of
true values falling within the p interval is greater than or equal to p for all p in [0,
1]. For instance, for a probability interval of 50%, an accurate model should have
at least 50% of the true values falling within this interval. The term precision refers
to how close this fraction of true values is to p for all p in [0, 1] (Deutsch, 2002).
These two closely related terms are neatly characterized by a simple crossplot of the
fraction of true values against the corresponding probability interval. A model is
both accurate and precise if this crossplot shows a 45 degree line. Figure 5.19 shows
the crossplot for the E-type estimate of Zn, with the BH data taken to be the true
data. For the 70% probability interval, the fraction of the true values falling within
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Figure 5.19: Accuracy plot for E-type estimate of Zn data.

this interval is 63%. For this and all other intervals shown in the plot, the match
between these two numbers was sufficiently close to indicate that the Zn models
were fairly accurate and precise. Figure 5.20 shows the crossplots corresponding to
Zn, Pb, Fe and Ba (Zn crossplot is identical to that shown in Figure 5.19). For all
four variables, the plots show that the models were satisfactory in their accuracy
and precision, with the Fe models as the most accurate and precise.

Scaling up to 25ft blocks. For each of the merged realizations, the (12.5ft)3

grid is scaled up to a (25ft)3 grid to match the resolution of the existing grade
and geology models. Similar to the upscaled models for BH comparison, upscaling
to (25ft)3 blocks was performed by a weighted average based on specific gravity
equations. Figure 5.21 shows a few of the simulated realizations for Zn at the 25ft
grid resolution.

Comparison between Simulation to Existing Long-Term Model. Figure
5.22 shows a visual comparison between the E-type estimate from simulation and
the existing long term model for bench 850. As expected, both maps were smooth.
The E-type estimate should be similar to the kriged results because the E-type
is the expected value taken over 40 realizations at each location within the block
model and kriging gives the expected value at each location. In contrast, a visual
comparison between Figure 5.21 and Figure 5.22 shows that a simulated realization
has greater variability than either the long term model (which was kriged) or the E-
type estimate. Figure 5.23 shows the crossplot comparison of the E-type estimates
from simulation to the corresponding long-term model values. The correlations
between the two approaches were high in the case of all four primary variables.
The comparison between Ba showed the most differences in the crossplot, with high
simulated values paired with some corresponding low long-term model values, and
vice versa. Despite this, there was a strong positive correlation. Overall, the high
correlations between the two modeling approaches were encouraging statistics that
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Figure 5.20: Accuracy plot for BH data and E-type estimate of simulation models:
Zn (top left), Pb (top right), Fe (bottom left) and Ba (bottom right).
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Figure 5.21: Simulated realizations of Zn at 25ft grid resolution. The section shown
corresponds to bench 850 (spanning elevations 850 to 875ft).
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Variable BH-DH BH-LT Model BH-E-type LT Model - E-Type
Zn 0.649 0.803 0.802 0.979
Pb 0.563 0.696 0.743 0.894
Fe 0.572 0.641 0.620 0.871
Ba 0.679 0.856 0.858 0.956

Table 5.5: Summary of correlation coefficients from all comparisons: BH to DH, BH
to Long Term (LT) model, BH to E-type estimate, and Long Term model to E-type
estimate.

provide validation for both the simulations and the existing models.

Summary of Comparisons

This section described the comparisons between the BH and the DH data, the BH
and the E-type estimate of the simulations, the BH and the existing long-term model,
and the E-type estimates to the long term model. Table 5.5 gives the summary of the
correlation coefficients for these comparisons. From Table 5.5, the worst correlations
were given by the BH-DH comparison, which was expected given that the paired BH
to DH samples may be separated by distances of up to 50ft. This type of comparison
was consistent with a comparison between a simulated or E-type model and the BH
data, since model values far away from DH samples are estimates in themselves and
also suffer from being far away from real DH data. The comparison between the
BH and both the long term model and the E-type estimate from simulation showed
very similar correlations, thus indicating that both models have similar predictive
abilities.

Given these comparable results, the conditional simulations were considered an
improvement over the existing model in that multivariate relations were honoured.
The long term model was generated using independent kriging of each variable.
Consequently, there was no assurance to honour the multivariate relations between
the different metals. For example, the grade of Zn at any one location has no effect
on the modeled grade of Pb, Fe or Ba at that same location. In contrast, the
simulations were constructed by explicitly accounting for the multivariate relations
between the different variables. As a result, the grade of one variable would affect
the simulated value of other metals at the same location. Furthermore, the multiple
realizations from simulation allow for the assessment of uncertainty on both a local
and global scale for decision making.

5.5 Potential Applications of Simulated Models

One of the main benefits of conditional simulation is the ability to assess uncertainty
in the model results. There are many ways that the information from multiple re-
alizations can be exploited to yield meaningful results for mine planning and risk
assessment. This section discusses a few simple applications such as assessment of
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Figure 5.22: Comparison between existing long term model (left) with E-type esti-
mate from simulation (right) at 25ft grid resolution. The section shown corresponds
to bench 850 (spanning elevations 850 to 875ft).
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long-term model.
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local uncertainty, along with recovery forecasting, resource estimation and uncer-
tainty in short term production.

Note that the applications in this section are for illustrative purposes only; some
parameters have been chosen arbitrarily to illustrate the application(s) to be imple-
mented and wherever possible, real functions have been used.

Applications using Local Uncertainty. Multiple realizations allow distribu-
tions of uncertainty to be constructed at each location. With these local distribu-
tions, different summary statistics can be calculated such as the expected value and
probability of interest. Note that the expected value at each location is the E-type
estimate that was used in the previous section for model validation. The models
that result from these calculations are based on all realizations simultaneously; they
are not one realization.

For a cutoff grade of interest, the probability of exceeding this threshold can be
assessed using the local distributions from simulation. The use of a high cutoff grade
shows areas that are surely high, that is, those areas with a high probability to be
high grade. Similarly, a map that shows the probability to be below a low threshold
reveals the areas that are almost certainly low. Figure 5.24 shows three probability
maps for Zn grade and one for Ba grade. The top two figures shows the reduced
area of certainty of finding low and medium grade Zn as a result of increasing the
Zn threshold (cutoff grade). The bottom two figures allows for a visual comparison
of the region of very high Zn grade (> 25%) and that corresponding to low Ba grade
(< 7%). For these maps, the Zn grades were chosen arbitrarily, while the Ba cutoff
grade corresponds to the grade specified by the mill for grade control purposes. Since
Ba grade adversely affects Zn recovery, it is important to determine the locations
within the pit where Ba exceeds the maximum allowable for production. These
maps provide one way to quickly determine the general areas where Ba grade may
be an issue.

Probability Map of Ore/Waste. For Red Dog, stockpile blending is based on
as many as seven different criteria, ranging from grade values of multiple metals,
grade ratios between metals, and particle textural criteria. The decision of which
material to send to a particular stockpile is initially based on model values, perhaps
refined by on-site inspection by mine geologists.

Greater accuracy in the ore/waste classification and stockpile construction can
be achieved by using the simulated realizations to determine the transitional zone.
Probability maps constructed using the blending criteria would show the transition
between ore and waste. Areas of indeterminant probability (0.3 to 0.7) may warrant
further sampling.

The methodology to generate such a model is fairly straightforward. The first
step is to classify each block within a realization as either ore or waste, and apply
a straightforward binary code (e.g. 1=ore, 0=waste). This classification requires
taking the first realization for all variables and visiting each block and applying the
classification criteria. When all blocks have been visited, the result is an indicator
model showing the blocks as either ore or waste. This step is performed for all
realizations.
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Figure 5.24: Probability maps to exceed a specific cutoff: Zn > 5% (top left),
Zn > 10 % (top right), Zn > 25 % (bottom left), and Ba > 7 % (bottom right).
The section shown corresponds to bench 850 (spanning elevations 850 to 875ft).
Note that the bottom two figures show areas of where the Zn grade is sure to be
high (where the probability is close to 1.0) and the corresponding areas where the
Ba grade is sure to be low (where the probability is close to 0.0).
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Figure 5.25: Probability of ore map based on stockpile criteria. The section shown
corresponds to bench 850 (spanning elevations 850 to 875ft).

The second step involves summarizing the 40 ore/waste models to yield a proba-
bility model. This step requires that each block in the ore/waste indicator models is
visited (over the 40 realizations), and a simple count is taken of the number of times
this block is classified as ore. Divide this number by 40 to yield the probability of
ore for this location. This is repeated until all locations have been visited to give a
probability of ore model.

The last step is to visualize this probability model (Figure 5.25). The result
shows areas that are highly likely to be ore, highly likely to be waste and the
transition from one zone to the other. Note that in this case, the stockpile blending
criteria, which consists of five different conditions (only grade-based conditions were
applied), was used as the classification criteria. These were:

Zn/Fe ratio ≥ 2.5
Fe ≤ 9.0%
Pb ≤ 5.7%
Ba < 7.0%

TOC ≤ 0.65%

Satisfaction of the above criteria resulted in a classification of ore. In practice,
economic criteria could be used to establish a map of profitability. A block that
yields negative profit would be classified as waste, while a block that gives positive
profit would be considered ore (see Section 5.6). This would also give a probability
of ore map.

Simulating Stockpiles from Models. This application is similar to the previous
application. The idea is to apply the blending criteria to specific volumes being
planned for a stockpile rather than on each block independently. These volumes
will be the construction of one or more stockpiles.
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The classification criteria are applied to each of the blocks within the volume
over the multiple realizations and multiple variables. A table can be constructed to
summarize the grade values from all 40 realizations to assess the mean and variance
of the grade distribution for the specific volumes. The probability of ore can be
calculated.

Recovery Forecasting. From the onset, a key application of the realizations was
to forecast recovery. Of course, this requires an understanding of the metallurgical
processes and the effect of metal and contaminant grades on recovery.

The following recovery functions were provided and the conditions were applied
in this order of priority:

1. If the material is vein type rock, then a constant Zn recovery of 89 % is applied.

2. For all other rock types:

(a) If Ba ≥ 7% then Zn recovery is given by

Zn recovery: 27.182 ∗ ln(Zn) − 3.4834, to a maximum 85%

(b) For Ba < 7%:

i. If Fe < 15.5% then

Zn recovery: 89.4 − 0.7 ∗ Fe

ii. If Fe ≥ 15.5% then

Zn recovery: (−0.4205∗Fe+90.196)−(55−(−0.531∗Fe+60.036))∗1.6

These transfer functions were applied to realizations of multiple grades to calcu-
late the Zn recovery at a specific location. Figure 5.26 shows six realizations of the
recovery models generated, while Figure 5.27 shows the maps that correspond to
the minimum, average and maximum calculated recovery at each location. The map
of minimum local recoveries shows regions that are surely to have high recoveries;
the map of maximum local recoveries shows those areas that will surely have low
recoveries. Note that in all maps, the areas corresponding to the vein rock unit have
a constant recovery factor, in accordance with the above recovery functions.

The result of generating these recovery models is that at each location, a local
distribution of uncertainty in the recovery can be constructed (Figure 5.28). Al-
ternatively, consideration of the average recovery based on all locations over the
realization would yield the uncertainty distribution in the global recovery (Figure
5.29).
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Figure 5.26: Six realizations of the recovery models as calculated based on recovery
functions provided by Teck Cominco. The section shown corresponds to bench 850
(spanning elevations 850 to 875ft).
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Figure 5.27: Summary maps of the 40 recovery realizations: the minimum (top),
average (middle) and maximum (bottom) recovery at each location. The section
shown corresponds to bench 850 (spanning elevations 850 to 875ft).

107



F
re

qu
en

cy

.750 .790 .830 .870 .910

.000

.100

.200

.300

.400

.500

Local Recovery

mean .84
std. dev. .01

maximum .85
minimum .83

Multiple Realizations of Recovery

F
re

qu
en

cy

.750 .790 .830 .870 .910

.000

.100

.200

.300
Local Recovery

mean .82
std. dev. .01

maximum .84
minimum .79

F
re

qu
en

cy

.750 .790 .830 .870 .910

.000

.050

.100

.150

.200

.250
Local Recovery

mean .83
std. dev. .02

maximum .86
minimum .78

F
re

qu
en

cy

.750 .790 .830 .870 .910

.000

.050

.100

.150

.200

.250

Local Recovery

mean .87
std. dev. .01

maximum .89
minimum .83

Figure 5.28: Uncertainty in the local recovery is shown for four arbitrarily chosen
locations within the model. In all cases, the reference point plotted in the box plot
of the histograms corresponds to the mean value.
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Uncertainty in Global Resource. In practice, the global reserve (within an
entire pit) is reported as a single number with no indication of the uncertainty in
this value. Using multiple realizations, simulation allows for uncertainty assessment
of the global reserves.

In the same manner as the recovery models were generated (above), a transfer
function to calculate reserves can be applied over a single realization of all variables
to determine the reserves based on that realization. This calculation would be
repeated for all the 40 realizations to obtain 40 different values for the global reserves.
A histogram of these 40 values would show the uncertainty in the reserves.

As the model generated for this case study was only a small portion of the
actual mine, and the pit limits were not available, the reserve cannot be determined,
however the resource within the model limits can be calculated.

Specific tonnage factor equations were provided by Teck Cominco for the block
averaging from the 12.5ft × 12.5ft × 12.5ft to the more practical 25ft × 25ft × 25ft
resolution. These equations account for the Zn, Pb, Fe and Ba grades at each block
within the grid. As a result, the density for each block within the model limits could
be directly calculated.

From the previous application of determining the recovery at each block location,
the recoverable resource can be calculated as:

recoverable resource = recovery * tonnes of material * Zn grade/100%

The above equation was applied to each location within the models to determine
the available Zn resource. Note again that no economic constraint has been applied
(e.g. defined pit limits and/or cutoff grades), so the above calculation is a simple
estimate of the material that can be recovered by the mill.

Figure 5.30 shows six realizations of the resource models generated, while Fig-
ure 5.31 shows the maps that correspond to the minimum, average and maximum
resource estimates at each location. Similar to the assessment of the local recovery,
uncertainty in the local resource can be determined at each location (Figure 5.32).
Further, uncertainty in the global resource can be assessed by calculating the global
resource from multiple realizations and plotting these in a histogram (see Figure
5.33).

Another directly related application is to assess the uncertainty in the resource
over a short term period. In this case, the short term period may correspond to
monthly or quarterly production, which can be directly traced to a specific volume
of material that is planned for mining in the next month or the next quarter. This
essentially involves determining the available resource within the specified volume.
Figure 5.34 shows an example of this type of application with an arbitrarily chosen
volume, and the uncertainty in the available resource is also shown.
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Figure 5.30: Six realizations of the resource models as calculated based on ton-
nage factors and recovery functions provided by Teck Cominco. The section shown
corresponds to bench 850 (spanning elevations 850 to 875ft).
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Figure 5.31: Summary maps of the 40 resource realizations: the minimum (top),
average (middle) and maximum (bottom) resource map at each location. The section
shown corresponds to bench 850 (spanning elevations 850 to 875ft).
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Figure 5.32: Uncertainty in the local resource is shown for four arbitrarily chosen
locations within the model (same locations as shown in Figure 5.28). In all cases,
the reference point plotted in the box plot of the histograms corresponds to the
mean value.
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Figure 5.33: Uncertainty in the global resource based on 40 realizations. The refer-
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112



Average Resource Map

East (ft)

N
or

th
 (

ft)

585000.00 589500.00
141500.00

146000.00
F

re
qu

en
cy

140000. 150000. 160000. 170000.

.000

.050

.100

.150

.200

Production

mean 157978.9
std. dev. 4564.3

maximum 166438.2
minimum 149539.2

Figure 5.34: Illustration of application for short term planning. The volume of
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and the uncertainty in the resource available is shown on the right. The reference
point plotted in the box plot of the histogram corresponds to the mean value.

113



5.6 The Value of Simulation

As the previous section showed, there are many possible applications of simulation.
In practice, multiple variables are estimated independently with ordinary kriging.
This section addresses the impact of the multivariate simulation approach using the
stepwise conditional transform relative to the conventional practice of kriging.

The idea is to compare the profit of ore from both methods with true reference
data coming from Red Dog. A profit function is applied to obtain a true profit
dataset. A subset of the reference data will be extracted and used to model the
grades using both kriging and simulation. The profit function will be applied to
these grade models. Based on the expected profit from each approach, each block
within the model will be classified as either ore or waste. The true profit at each
location is known, so the profit from each model can be calculated.

Profit Function. The real profit function was not available; a profit function was
developed for this exercise. The following simple function was proposed:

profit(u) = (Zn(u) · rz · f1(Ba(u)) · f2(Fe(u)) · pz + Pb(u) · rp · pp − cfix) · tons (5.2)

where

u = location vector
Zn = Zn grade
rz = Zn recovery function used to scale the maximum Zn recovery

f1(Ba) = factor that accounts for effect of Ba on Zn recovery
f2(Fe) = factor that accounts for effect of Fe on Zn recovery

pz = price of Zn, in �US/ton
Pb = Pb grade
rp = Pb recovery
pp = price of Pb, in �US/ton

cfix = fixed cost in �US/ton
tons = tons of material based on specific gravity equations

provided by Teck Cominco

The only information available are the metal grades. All other parameters were
developed or chosen to be constant. The metal recoveries for both Zn and Pb, rz

and rp, were calculated as Red Dog’s five year average recovery (1998-2002) based
on Teck Cominco’s financial report [78]. These were 83.6% Zn recovery and 58.7%
Pb recovery. The price for Zn was chosen to be �680/ton of Zn, and the price for Pb
was chosen as �380/ton of Pb; both prices were approximated based on the metal
prices from the London Metal Exchange in 2003 [79].

Although recovery functions were provided by Teck Cominco (Section 5.5), those
functions did not actually depend on Ba grade. At the time of this work, Teck
Cominco was developing new functions based on extensive metallurgical testing. In
light of this lack of confidence in the recovery functions, the Zn recovery function
was scaled by functions that quantify the impact of Ba grade and Fe grade as a
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Figure 5.35: Zn recovery function developed for comparison of kriging and simula-
tion. Function for grades between 0 and 10% is shown, no reduction in recovery was
expected beyond 10%.

Figure 5.36: Discount function on Zn recovery due to %Ba content.

fraction of the maximum recovery. For Zn, the recovery function (see Figure 5.35)
reaches a constant maximum recovery beyond a threshold grade of 10% Zn. Lower
Zn grades than this threshold results in a fraction of the maximum recovery, to a
minimum of 50%. The rate of this change was expected to be fairly gradual.

A discount function for Ba content was developed by considering that a thresh-
old grade of 7% Ba resulted in significant impact on Zn recovery. At grades below
this threshold, the discount factor was expected be fairly constant. Near the thresh-
old grade of 7%, an inflection point in the discount function was expected, and
would gradually flatten at a minimum discount of 35% since some Zn would still be
recovered (Figure 5.36).

The discount function for Fe was based on the recovery functions provided by
Teck Cominco (Section 5.5), and is illustrated in Figure 5.37.

All that remains to determine is the fixed cost. For this, an arbitrary cost per
ton mined was chosen such that the area of interest yielded approximately 50% ore
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Figure 5.37: Discount function on Zn recovery due to %Fe content. Two different
discount functions were applied with a threshold grade of 15.5% Fe. These functions
were based on the recovery functions provided by Teck Cominco Limited.

and 50% waste classification. This depends on the region chosen for modeling; for
this exercise and the area described below, the fixed cost was set at �128/ton and
accounts for all operational costs including mining and milling cost.

Reference Data. For a fair comparison to be made, real data must be used. The
density and number of BH data available make it an attractive database for true
data. Rather than modeling the entire area, only a small area will be modeled. The
area was chosen to be in a marginal zone, where ore/waste classification based on
the models would have the largest impact.

Figure 5.38 shows the available BH data in the chosen region of 400ft × 400ft in
the 850 bench (spanning elevations 850 to 875ft), and the subset of data extracted
from this region. The available data consists of 532 BH samples of Zn, Pb, Fe and
Ba. From this dataset, 25 samples separated at a nominal 100ft × 100ft spacing
were chosen to act as exploration data. This spacing is consistent with the DH data
available for Red Dog. This subset of data was used as conditioning data for kriging
and simulation.

Model Construction. The model grid was chosen to be 10ft × 10ft × 25ft, which
is similar to the 10ft × 12ft × 25ft spacing of the BH data. A total of 1600 blocks
were modeled.

With only 25 samples available for modeling, variography would be very diffi-
cult. To filter out the influence of poor variogram inference, variograms for both
approaches were calculated and fitted using the reference 532 BH data.

The variograms for kriging were calculated for the original data (Figure 5.39).
The variograms for simulation were calculated and fitted for the stepwise condi-
tionally transformed data (Figure 5.40). In both sets of variograms, a trend was
apparent from the experimental points extending beyond the sill of 1.0. This was
not surprising given that the area was purposely chosen to be in the transition zone
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Figure 5.38: Location map of reference BH data (left) and sampled BH data (right)
for use in comparing model approaches.

between ore and waste material, hence a trend from low to high grades was expected.
Trend modeling was not performed for this exercise because of the relatively small
area.

For kriging, each variable was estimated independently using ordinary kriging.
For simulation, the stepwise conditionally transformed variables were independently
simulated using sequential Gaussian simulation to generate 100 realizations of the
grades. Figure 5.41 shows a comparison of the estimated grades from kriging and
one realization of the simulated grades. As expected, the kriged models were very
smooth, while the simulated realization showed greater variability while honouring
the same large scale features shown in the kriged models.

Results. These grade models were then processed by applying the profit function
at each location within the model. Although, 100 realizations of profit were available
from simulation, the ore/waste classification was based on the expected profit map
obtained by calculating the expected value of profit at each location. Figure 5.42
shows the profit map obtained from simulation and kriging along with the true profit
at the 532 locations where real data were available.

Although 1600 locations were modeled, only the 532 blocks corresponding to
locations where true data were available can be compared. At these locations, the
true profit was known. The models from kriging and simulation were used to classify
the 532 locations as either ore or waste:

i(uα; profit) =
{

ore, if profit(uα) ≥ 0
waste, if profit(uα) < 0

Figure 5.43 shows the comparison of the ore/waste classification of the 532 loca-
tions from the true relative to the kriging and the simulation approaches. Overall,
both approaches clearly show the waste and the ore region; relatively few blocks
were misclassified.
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Figure 5.39: Variograms of direct space data for use in ordinary kriging approach:
Zn (top left), Pb (top right), Fe (bottom left) and Ba (bottom right). The two
directions shown correspond to the horizontal minimum and maximum directions of
continuity.
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Figure 5.40: Variograms of stepwise conditional scores for use in simulation ap-
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The two directions shown correspond to the horizontal minimum and maximum
directions of continuity.
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Figure 5.41: Comparison of kriged model (left) and one realization from simulation
(right) for Zn, Pb, Fe and Ba (from top to bottom).
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Figure 5.42: Comparison of true profit map at data locations (top) and the profit
map for ore/waste classification from kriging (bottom left) and simulation (bottom
right).
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from kriging (bottom left) and simulation (bottom right) at data locations.
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Figure 5.44: Ore/Waste classification summary of kriging (left) and simulation
(right) relative to true ore/waste classification.

Figure 5.44 shows the summary of the ore/waste classification from both kriging
and simulation relative to the true classification. The tables show that the kriging
approach resulted in a total 7% of blocks that were misclassified, compared to the
6% misclassified by simulation. From the true profit, 251 blocks (47% of the true
data) were classified as ore; simulation correctly classified ore for 98% of those blocks
while kriging correctly classified 90% of those blocks.

For those blocks classified as ore, the profit of ore mined as a result of the clas-
sification from each method was compared with the true profit of �7.89M (million).
The results from such a comparison showed that the simulation approach yielded
�7.28M while kriging yielded �7.06M in profit. Although these profit values appear
high for the relatively small area, the relative percentage increase in profit is the key
result. Multivariate simulation resulted in 92% of the true profit relative to the 89%
yielded by kriging. In practice, this 3% difference may translate to several millions
of dollars in increased profit.

5.7 Remarks

For the seven variables within the eight rock types, conditional simulation models
were constructed using the stepwise conditional transformation technique to account
for the multivariate relations. 12.5ft composites and a geology model at (25ft)3

resolution were used to develop these models. Each model was validated by checking
reproduction of the input drillhole data, representative histogram, variogram, and
the multivariate distributions.

Validation with additional data and comparisons to the existing long term model
showed the conditional simulations have similar predictive abilities to the existing
models. Multivariate simulation provides two significant improvements from the
existing long term model. Firstly, the simulated realizations account for the complex
multivariate relations inherent in the data, resulting in models that respect these
relations on both a local and global scale. Secondly, the simulation models provide
a basis for some interesting applications for decision making and risk assessment.
These applications range from classification of ore/waste regions based on complex
criteria to recovery forecasting given a clear understanding of metallurgical processes
and relations.

A comparison of the multivariate simulation approach used in this case study and
the common practice of kriging multiple variables independently showed that the

123



simulation models resulted in an increase in profit of 3% over the kriging approach,
yielding a total of 92% of the true profit.
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Chapter 6

Comparison of Multivariate
Cosimulation Algorithms

There are only a few cosimulation algorithms that are applied in practice. A balance
is struck between honouring the available information and the simplicity of the
modeling process. The most complex step in geostatistical modeling is the choice
and subsequent fitting of a coregionalization model. The type of simulation that
follows is a direct consequence of this decision.

Full cosimulation results from the adoption of a linear model of coregionalization
(LMC), while the simpler (and more common) collocated cosimulation is a conse-
quence of adopting the Markov hypothesis. Commercial and public domain software
implement the conventional simulation algorithms, so the actual simulation step of
a project is relatively straightforward.

This chapter compares the results of conventional cosimulation algorithms to a
real petroleum dataset. The techniques employed are a direct consequence of adopt-
ing some of the models of coregionalization (Section 2.1.4). Four practical methods
are compared: (1) cosimulation with full cokriging, (2) cosimulation with collocated
cokriging, (3) cosimulation with stepwise conditionally transformed variables, and
(4) indicator simulation with the Markov-Bayes model. Multiple realizations are
generated for each technique and then processed through a simple flow simulation.
Each method is compared based on the resulting flow performance, as well as re-
production of the multivariate distribution.

Unfortunately, we have no reference true values so all we can do is note the
significant differences in the results and encourage careful application of multivariate
geostatistical tools.

6.1 The Data

The dataset is made available by Amoco. There are three variables of interest:
porosity, permeability and seismic data. The seismic data is considered as soft data
that is available in 2-D (see Figure 6.1), which will be used as secondary data in
the cosimulation of porosity and permeability. Data sampling is fairly regular (Fig-
ure 6.1), with large areal extents and relatively small thickness. A 2-D simulation
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Figure 6.1: Location map of available hard data (left). Only porosity is shown
(collocated permeability data is available). Map of available seismic data for use as
soft data (right).
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exercise will be considered.
Porosity and permeability are hard data and represent the two variables that

will be simulated. The distributions for each variable are shown in Figure 6.2, and
the bivariate relations between all three variables are presented in Figure 6.3. It is
clear that a functional relationship with porosity was used to obtain permeability
data.

In the subsequent sections, multiple cosimulation algorithms will be applied to
this dataset. The coregionalization models used in each technique are different,
so the variogram model(s) used in simulation will be presented in the appropriate
simulation section.

6.2 Cosimulation Algorithms

All of the techniques share one feature: all employ a sequential simulation approach.
Recall from Section 2.1.7 that the basic steps in sequential simulation, excluding any
prior transforms, are:

1. Define a random path visiting each location in the domain.
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Figure 6.3: Cross plot of porosity-permeability (left), porosity-seismic (centre) and
permeability-seismic data (right).

2. At each location:

(a) Search for nearby primary (and secondary) data, and previously simu-
lated nodes.

(b) Perform (co)kriging to determine the parameters of the conditional cu-
mulative distribution function (ccdf).

(c) Draw from the ccdf, defined by the kriged parameters, using Monte Carlo
simulation.

(d) Proceed to next location, and repeat until all locations are visited.

Both the conventional full and collocated cosimulation follow the above proce-
dure almost exactly (after normal score transformation) - the main differences lie in
the number of secondary data used in the cokriging step and the effort required to
infer the full LMC. These two approaches follow directly from adopting either an
LMC or a Markov Model (Section 2.1.4), respectively.

The stepwise conditional transformation to improve multivariate Gaussian sim-
ulation presents yet another cosimulation approach. A complex model of coregion-
alization is an implicit result of applying this multivariate transform (Section 3.1);
however, the resulting independent Gaussian variables only require independent
simulation, making the approach simple to apply.

Alternatively, a sequential indicator approach may be used to estimate the ccdf
directly, rather than assuming a simple parametric distribution (Section 2.1.7). The
Markov-Bayes coregionalization model permits the consideration of soft data, such
as seismic impedance.

These four cosimulation algorithms will be compared. Details of the variogram
modeling are provided in the next sections. For all techniques, only a 2-D horizontal
simulation at mid-depth was performed. One hundred realizations were generated
for each variable. In each simulation, the entire dataset was used for 3-D variogram
modeling, but only the samples at the midpoint in each well were used to condition
the simulation. These conditioning data were not assigned to grid nodes.

Cosimulation using Full Cokriging. Since simulation will be performed in nor-
mal or Gaussian space, a normal score transform was independently applied to each
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Figure 6.4: Cross plot of normal scores for porosity-permeability (left), porosity-
seismic (centre) and permeability-seismic data (right).

Variable-Variable Nugget cc Structure 1 cc Structure 2 cc Structure 3
Type Exponential Spherical Spherical
Range av = 20 av = 70 av = 70

Parameters ahmax = 3000 ahmax = 20000 ahmax = 38000
ahmin = 2000 ahmin = 5000 ahmin = 10000

φ − φ 0.05 0.40 0.30 0.25
K − K 0.05 0.50 0.24 0.21

AI − AI 0.00 0.40 0.45 0.15
φ − K 0.05 0.44 0.20 0.22
φ − AI 0.00 0.10 0.11 0.19
K − AI 0.00 0.00 0.26 0.12

Table 6.1: Table of variance contribution (cc) of each nested structure in the six
variograms constituting an LMC model for full cokriging.

variable. The resulting crossplots are shown in Figure 6.4, and clearly show non-
Gaussian features.

Challenges in modeling an LMC for more than two variables make this approach
cumbersome to employ. Nevertheless, an LMC model is required to define the spatial
relationships between the hard porosity and permeability data to the soft seismic
data. The six experimental and model variograms for the horizontal direction are
shown in Figure 6.5, and are tabulated in Table 6.1. As the seismic data is 2D,
no vertical variograms were calculated or modeled for this variable. The direct and
cross variograms in the vertical direction for porosity and permeability are shown
in Figure 6.6.

Cosimulation using Collocated Cokriging. This alternative is attractive be-
cause fewer variograms have to be calculated and fitted. Note that only Markov
Model I will be applied (henceforth simply referred to as the Markov Model). This
model only requires that the normal score variogram for the primary data be mod-
eled, and the collocated secondary data be used in cokriging.

Again Gaussian simulation will be performed, so a normal score transform was
applied to porosity and permeability. The correlation coefficients in the cross plots
shown in Figure 6.4 were required for this simulation. The required normal scores
variograms are the same as the direct variograms listed in Table 6.1.
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Stepwise Conditional Transform. From Figure 6.4, the trivariate distribution
of the normal scores was clearly non-Gaussian. Applying Gaussian simulation using
the normal scores would ignore this non multi-Gaussian behaviour. For cases such
as these, the stepwise conditional transform can be applied.

Since seismic data was available at all locations in the 2-D grid, it was selected
as the primary variable. Porosity was chosen as the secondary variable and per-
meability was the last variable to be transformed (conditional to both seismic and
porosity data). With over 3000 data available, ten probability classes were chosen,
resulting in a minimum of 30 data to define each conditional distribution.

The multivariate distribution of the stepwise conditional (SC) scores are shown
in Figure 6.7. A banding effect is apparent. This is partially attributed to the fact
that seismic data is 2-D, and so the seismic data that is collocated with the data is a
constant at each well. Secondly, the strong functional relationship between porosity
and permeability (in Figure 6.3) may have been transferred to the transformed
Gaussian space.

Only two variograms were required to be modeled - SC porosity and SC per-
meability (since seismic was available everywhere, there was no need to simulate
this variable). The cross variograms for h > 0 between the transformed variables
were checked, with a result showing a maximum correlation of 0.07. Since this cor-
relation was quite low, independence of these variables was assumed. The direct
variograms for SC porosity and SC permeability are shown in Figure 6.8 fitted with
the following model:

γφ(h) = 0.65Exp
ahv = 14

ahmax = 1800
ahmin = 1500

(h) + 0.35Sph
ahv = 40

ahmax = 50000
ahmin = 8000

(h)

γK(h) = 0.10 + 0.75Exp
ahv = 2

ahmax = 800
ahmin = 800

(h) + 0.15Sph
ahv = 40

ahmax = 7000
ahmin = 7000

(h)

Compared to the variograms for the normal scores (Figure 6.5), the SC porosity
scores exhibit similar continuity as its normal scores counterpart; while the SC
permeability shows a very different spatial structure with the variability increasing
more quickly at the short scale in both the vertical and the horizontal directions.

Indicator Simulation using Markov-Bayes Model. Unlike Gaussian tech-
niques, the indicator approach is a non-parametric method. The conditional distri-
bution is defined by the kriged estimates for a series of thresholds. This requires
variograms for each threshold. The cross-variogram between thresholds should also
be modeled and cokriging applied; however, this quickly becomes cumbersome and
often impractical as the number of thresholds increases (e.g. for 4 thresholds, 10
variograms are required to be simultaneously modeled for the LMC).
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Figure 6.7: Cross plot of stepwise conditionally transformed scores for porosity-
permeability (left), porosity-seismic (centre) and permeability-seismic data (right).
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Threshold B(u)
Porosity-Seismic Permeability-Porosity

0.10 0.0510 –
0.20 0.0916 –
0.30 0.1329 0.8814
0.40 0.1433 0.8647
0.50 0.1645 0.8858
0.60 0.1899 0.9038
0.70 0.1534 0.7704
0.80 0.0999 0.6902
0.90 0.0490 0.6198

Table 6.2: Table of calibration factors between the hard local data (left in column
title) and available soft data (right in column title).

For this data, porosity was modeled using nine thresholds (corresponding to the
10 deciles). The horizontal and vertical indicator variograms for each threshold are
shown in Figures 6.9 and 6.10, respectively. They show similar structures as the
Gaussian variograms.

The original permeability data consisted of a large number of 0.05 mD samples,
comprising almost 30 per cent. For this reason, permeability was model by defining
seven thresholds: 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, and 0.90. The corresponding
horizontal and vertical indicator variograms are provided in Figures 6.11 and 6.12,
respectively.

To simulate porosity, the gridded seismic data was calibrated to obtain the scal-
ing factors (B(z)) to define the cross-covariance between the hard and soft data,
as well as the covariance of the soft data (Section 2.1.4). For the simulation of
permeability, the porosity data was considered as soft data, and the corresponding
calibration factors were also calculated. Table 6.2 lists the calibration factors for
the indicator simulation of both porosity and permeability. From Table 6.2, low
calibration factors for simulating porosity indicated that the soft seismic data was
not as informative than in the case of simulating permeability using soft porosity
data.

Comments. Alternative multivariate simulation approaches exist, including prin-
cipal component analysis (PCA) and direct sequential cosimulation. PCA could be
used in multivariate simulation, with a primary objective of reducing the dimen-
sion of the required cosimulation (Section 2.2.1). For this particular data set, only
two variables are simulated. Depending on the adopted model of coregionalization,
there may be relatively little to gain from employing this technique (that is, un-
less the LMC is chosen, there is little reduced effort in variogram modeling but a
rather inconvenient additional transformation and back transformation that must
be applied).

Direct sequential cosimulation is another alternative. The theoretical and nu-
merical development is not fully developed. A discussion of the anticipated chal-
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Figure 6.9: Indicator variograms for porosity for each of the nine thresholds. Solid
lines are the fitted models for the experimental points shown. Dark lines correspond
to the direction of minimum horizontal continuity, while lighter lines correspond to
direction of maximum horizontal continuity.
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Figure 6.10: Indicator vertical variograms for porosity for each of the nine thresholds.
Solid lines are the fitted models for the experimental points shown.
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Figure 6.11: Indicator variograms for permeability for each of the seven thresholds.
Solid lines are the fitted models for the experimental points shown. Dark lines
correspond to the direction of minimum horizontal continuity, while lighter lines
correspond to direction of maximum horizontal continuity.
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Figure 6.12: Indicator vertical variograms for permeability for each of the seven
thresholds. Solid lines are the fitted models for the experimental points shown.
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lenges and some ideas being pursued to advance research in this area are provided
in Appendix B.

6.3 Comparison of Cosimulation Algorithms

The first realization of porosity and permeability were arbitrarily chosen for the
purpose of a simple visual comparison. Figure 6.13 shows the realizations of poros-
ity and permeability, resulting from the four approaches employed. Overall, all four
techniques show low values in the west and south-east quadrant, with a high region
in the north-east quadrant of the field. These features correspond to those exhib-
ited in the soft data (see Figure 6.1). Of the Gaussian approaches, simulation with
stepwise conditionally transformed variables yields the least variable realizations;
conventional Gaussian-based simulations all show higher variability. The smooth-
ness of the stepwise conditional realization indicates the strong influence of the
seismic data through the multivariate distribution (recall that both porosity and
permeability were transformed conditional to seismic data). The Markov-Bayes ap-
proach shows the most distinct transition from the low values in the west to the
high values in the east.

Aside from visually, it was difficult to compare models generated by each ap-
proach without knowledge of the true reservoir. Instead, two comparisons were
made: (1) a simple transfer function illustrated the effect on flow performance of
the models from each cosimulation method, and (2) an examination of the result-
ing bivariate distributions showed how well the methods were able to reproduce
higher order statistics (extending beyond the traditional histogram and variogram
reproduction).

Flow simulation. A simple flow simulation program was used to test the dynamic
performance of the realizations from each simulation method. The program flowsim
by Deutsch [19] provided a quick and simple algorithm that permitted all realizations
to be processed. The algorithm involved defining the dimensions of both the input
grid and the desired grid (the latter must be some integer, such that the input grid
is divisible). Directional effective permeabilities were calculated by setting no flow
boundary conditions on parallel sides. For instance, to calculate kxeff , the north
and south edges of the grid were set as no flow boundaries, steady-state single phase
flow equations were solved to determine the effective permeability in the X direction
[19].

Using this flow simulation program, all 100 realizations from each method were
processed. Since only an overall comparison was desired, the output grid is set to 1×
1×1 and the north and south edges of the grid were set to no flow boundaries. This
provided an overall kxeff for each realization. The methods were then compared
based on the p10, p50 and p90 values for kxeff (see Table 6.3 and Figure 6.14).

There was significant spread in the kxeff values. The p10 and p90 between all
the techniques overlap. Gaussian simulation with full cokriging showed the largest
spread in values, while indicator simulation with the Markov-Bayes model yields the
smallest range. Gaussian simulation with collocated cokriging produces the smallest
spread between the p10 and p90 values of the Gaussian techniques.
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Figure 6.13: First realization of porosity (left) and permeability (right) for each
simulation approach: full cokriging (top row), collocated cokriging (second row),
stepwise conditional (third row) and indicator with Markov-Bayes (bottom row).
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Method kxeff (mD)
p10 p50 p90

Full CK 0.1205 0.1965 0.482
Collocated CK 0.167 0.179 0.1925

Stepwise 0.168 0.197 0.233
Markov-Bayes 0.165 0.173 0.18

Table 6.3: Summary of p10, p50 and p90 effective permeability in X direction from
each of the cosimulation methods employed.

    .000     .100     .200     .300     .400     .500     .600

kx_eff (mD)

Markov-Bayes                            

Stepwise                                

Collocated CK                           

Full CK                                 

Figure 6.14: Comparison of flow simulation results from different cosimulation algo-
rithms for effective permeability in X direction. The box shows the spread between
the p10 and the p90, while the vertical line within the box shows the p50.

Since the true reservoir, and hence its effective permeabilities, were unknown, a
comparison of the flow performance of the models generated by each method was
not a sufficient measure to compare the performance of the techniques. Instead, we
examined the ability of each method to reproduce the original data distributions.

Reproduction of Multivariate Distribution. Recall that the conditioning
data was only a small subset of the entire dataset (only mid-well samples were
used). We know that simulation reproduces the histogram, and use of simple krig-
ing in simulation will reproduce the variogram. Histograms and variograms were
verified, and confirmed these expectations.

Reproduction of the bivariate distribution of porosity and permeability were also
examined. These are shown in Figure 6.15 for the first realization. The Gaussian
techniques showed good reproduction of the bivariate distribution. The indicator
method reproduced the overall shape of the bivariate distribution; however, it pro-
duced simulated values with higher variance than those generated by the Gaussian
techniques.

Further, a comparison of the bivariate distribution in Gaussian space was com-
pared for the three Gaussian techniques. This required further investigation due
to the non-Gaussian features of the normal scores cross plot in Figure 6.4, which
corresponds to the transformed data used in the conventional full and collocated
cosimulation. Figure 6.16 shows the simulated porosity and permeability values
prior to back transformation for the three Gaussian methods. Clearly the full and
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Figure 6.15: Cross plot of porosity and permeability for first realization from each
simulation approach: full cokriging (top left), collocated cokriging (top right), step-
wise conditional (bottom left) and indicator with Markov-Bayes (bottom right).
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collocated cokriging approaches assumed a bivariate Gaussian distribution which
was inconsistent with the input bivariate distribution. The stepwise method repro-
duced the input Gaussian bivariate distribution.

6.4 Remarks

A comparison of multivariate simulation techniques using real data was difficult in
the absence of true values. The best we could do was to compare each technique
based on their intended application. This required that the assumptions for each
approach be considered and compliance with these assumptions be checked.

For this particular dataset, the comparisons of the techniques were based on the
ability of the methods to reproduce the multivariate data and compliance with the
inherent assumptions of the approach. In the first criteria, simulation of the step-
wise conditionally transformed variables showed better reproduction of the bivariate
distribution of porosity and permeability. Visualization of the realizations showed
the strong influence of the seismic data on the stepwise conditional model. Further,
unlike the two conventional Gaussian approaches, it also satisfied the multiGaussian
assumptions inherent in the simulation approach.

In practice, the choice of which cosimulation approach to apply will be affected
by the amount and type of available data, the number of variables of interest, and
the ease of implementation of the technique. This choice will further impact the
response variable, and consequently may have significant effects on future decisions
pertaining to reservoir development.

In general, the conventional Gaussian cosimulation methods should be applied
if the multivariate distribution is approximately multiGaussian after normal score
transformation of each variable. The choice between full cokriging and collocated
cokriging depends on the number of secondary data that are available and the effort
required to infer the LMC model. Collocated cokriging can only be applied if there
are secondary data at every location, but variogram modeling is greatly simplified
by this approach.

For data that deviate from the Gaussian distribution after normal score trans-
formation, a non-parametric approach may be appropriate. The Markov-Bayes ap-
proach would be particularly applicable if the calibration factors indicate that sec-
ondary data are informative of the primary variable. Alternatively, if it is important
to accurately reproduce distinct features such as non-linearity and/or constraints,
then the stepwise approach would be an appropriate choice for simulation.

The advantage of the stepwise approach compared to full cosimulation and
Markov-Bayes indicator simulation is the reduced effort in variogram modeling. Rel-
ative to both the conventional Gaussian approaches, the stepwise conditional method
satisfies the assumption of a multiGaussian distribution inherent in Gaussian simu-
lation. Furthermore, the simplicity of implementation and the computational speed
to run a simulation are two large advantages of the stepwise approach. Overall, the
stepwise method yields accurate reproduction of the multivariate distribution, and
better reproduction of the multivariate features must almost certainly translate to
models that are closer to the truth.
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Figure 6.16: Cross plot of normal scores of porosity and permeability for first real-
ization from each simulation approach (prior to back transformation): full cokriging
(top), collocated cokriging (middle), and stepwise conditional (bottom).
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Chapter 7

Stepwise Transformation for
Geostatistical Modeling with a
Trend

Trend modeling is an important part of natural resource characterization. A com-
mon approach to account for a variable with a trend is to decompose it into a
relatively smoothly varying trend and a more variable residual component. Then,
the residuals are stochastically modeled independent of the trend. This decompo-
sition can result in values outside the plausible range of variability, such as grades
below zero or ratios that exceed 1.0.

In this application of the stepwise conditional transformation, the residuals are
transformed conditional to the trend component to explicitly remove these com-
plex features prior to geostatistical modeling. Back transformation of the modeled
residual values allows the complex relations to be reproduced.

This chapter discusses some of the methods to detect and model a trend, but
will focus primarily on the additive decomposition of the random variable into a
mean and residual. Common problems associated to this decomposition will be
addressed, and the effectiveness of the stepwise conditional transformation to handle
these problems will be shown [47].

7.1 Background

Spatial trends violate the assumption of stationarity (Section 2.1.1) and the applica-
tion of geostatistical methods is no longer straightforward. Real data often exhibit
spatial trends in the first and/or second moment. For example, it is common to
have regions of low and high grades within a mineral deposit. Further, the variabil-
ity within these regions may change depending on the grades. Direct application
of common geostatistical tools may inappropriately spread (or smear) spatial fea-
tures across different areas; trend modeling becomes an integral component to the
geostatistical work flow.

A further complication is the subjectivity of trend detection and modeling. There
is no “objective” way to determine that there is a trend. The existence of a trend
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and how to model it is very much dependent on the practitioner. Trends depend on
many factors, including the data available and the scale of observation. Although it
is common for most trends to be modeled arbitrarily by a decomposition approach,
the practitioner’s experience with similar deposits/reservoirs may also affect the
trend model.

Detecting Trends. In some cases where the depositional environment is well
understood, trends can be detected by geological knowledge of the site of interest.
In most cases, however, the data are the source for trend detection. Large scale
spatial features can be detected during several stages of data analysis and modeling.
Sometimes a simple crossplot of the data against elevation may show a trend (Figure
7.1). To visualize trends, a moving window average of the data can be calculated
to determine if local means and/or variances are indeed stationary. The size of
these “windows” will depend on the number of data available. Also, if few data are
available, then these windows may overlap so as to permit more reliable calculation
of the local statistics [28, 33]. If there are notable changes in the local mean and
variance within the domain, the practitioner may decide that there is a spatial trend.

Although the identification of a trend is subjective, it is widely accepted that the
trend is essentially deterministic and should not have short scale variability. Any
features that are not significantly larger than the data spacing should probably be
left for stochastic modeling.

One further step is to examine the data for a proportional effect, that is, whether
the local variance is dependent on the local mean [20, 28, 40]. In general, a crossplot
of the local mean and the local variance can show this phenomenon. In the presence
of a proportional effect, the relation between the local mean and variance is often
quadratic. In this case, application of the stepwise conditional transform involves
transforming the residuals to be independent of the mean. This application will
often account for the proportional effect; however, some basic checks during model
construction can be used to see if further steps are required.

Another stage of the modeling process where spatial trends may be evident is
during variography. The experimental variogram may show a trend in any one
or more of the principal directions. This is easily identified as the experimental
variogram continues to increase above the variance of the random variable as the
lag distance, h, increases (Figure 7.2). This usually indicates that the practitioner
should revisit their decision of stationarity and consider whether the domain should
be subdivided or a trend considered.

Common Trend Modeling Approaches. The most common approach is to
separate the RV into two components - the trend and the residual:

Z(u) = m(u) + R(u) (7.1)

where Z is the original RV, m is the trend or mean component, R is the residual
RV, and u denotes the location coordinates (x, y, z). This type of decomposition
correspondingly leads to a decomposition of the total variability of the original RV:

144
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Figure 7.1: Example of vertical trend as indicated by two well logs. (Source:
Deutsch, 2002)
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Figure 7.2: Example of porosity log (left) and corresponding vertical variogram
(right) showing existence of a vertical trend. (Source: Deutsch, 2002)
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σ2
Z = σ2

m + σ2
R + 2C(R,m) (7.2)

where σ2
Z is the variance of the original RV, σ2

R is the variance of the residual RV,
and C(R,m) is the covariance between the residual and the mean components. This
covariance can be either negative or positive; however, if this value is close to zero,
fewer artifacts associated to the decomposition are expected [20].

The mean component is defined at all locations via a 3D trend model, while
the residual values are only defined at data locations [20]. Geostatistical modeling
is then only performed on the residuals, which are considered to be stationary.
Multiple realizations of the residuals are generated and added back to the single
trend model to produce multiple realizations of the original RV.

The problem remains as to how the trend should be “modeled” so as to obtain a
stationary residual random function (RF) for geostatistics. The idea is to obtain a
model that accounts for large scale variability; small scale variability is accounted for
in geostatistical modeling of the residuals. As a result, trend models are typically
smooth models constructed through interpolation and extrapolation of the trend
data. In areas of interpolation or within the range of the data, there may be no
need for a trend model - the model values will be influenced and/or controlled by
the data.

There are several trend modeling approaches that have gained popularity in
practice, mainly as a result of their ease of application:

1. Hand contour geologic sections to account for drillhole data and analogue
information.

2. Calculate moving window averages at each location and use this smooth map
as a trend map.

3. Apply common robust estimation algorithms such as ordinary kriging to gen-
erate a smooth trend map.

Universal kriging [31] or intrinsic random functions of order k (IRF-k) could
also be considered for automatic modeling of the trend. Typically a low order (≤ 2)
polynomial function is used to model the trend (a polynomial of order 0 amounts to
ordinary kriging with an unknown local mean) [33]. Automatic fitting of the trend
using polynomials is generally not recommended as extrapolation of the trend may
give rise to unrealistic grades or petrophysical properties. The use of these methods
in simulation is problematic and not implemented in most software.

Another common approach to constructing a 3-D trend model is to develop a
1-D and a 2-D trend model and integrate these into a consistent 3-D trend model.
A 1-D vertical trend could be developed to capture the trend within drillholes. A
2-D trend map in the horizontal plane could be used to capture any areal trends
that may exist between the drillholes. There is no unique way to integrate these
two trends into a consistent 3-D trend model [20]; however, one such approach is to
scale the areal trend by the proportion of the vertical trend to the global mean:
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Figure 7.3: Example of heteroscedastic variance of residuals (left), and linear con-
straint on residuals (right).

m(x, y, z) = mglobal ·
(

m(z)
mglobal

)
·
(

m(x, y)
mglobal

)
(7.3)

This is straightforward and well adapted to practice where limited data may make
it difficult to infer a full 3-D trend model. Inherent in Equation 7.3 is an assumption
of conditional independence of the vertical trend component within the horizontal
plane and the horizontal trend component in the vertical direction.

Problems in Trend Decomposition. Given this common approach of decom-
posing the RV, the term “trend modeling” has come to be synonymous with the
modeling of the local mean. Unfortunately, this is a rather limited view in the sense
that trends may exist in both the mean and/or the variance. Common geostatistical
estimation and simulation tools, with the exception of indicator approaches, implic-
itly assume homoscedasticity. Figure 7.3 (left) shows an example of a heteroscedas-
tic relationship between the trend and the residuals. Straightforward application
of geostatistical modeling does not account for these departures from stationarity;
these must be explicitly handled in the construction of the numerical model of the
residual random variable (RV).

The second problem arises as a consequence of the simple decomposition of the
RV Z(u) in Equation 7.1. Inevitably, this dissociation results in some constrained
bivariate relationship between the trend component, m(u), and the residual compo-
nent, R(u). For a non-negative RV Z(u), the residual component must be greater
than or equal to the negative trend component, that is, R(u) ≥ −m(u). Figure 7.3
(right) shows an example of this type of constraint for a copper deposit for which a
3D trend model was constructed.

The problem arises in the reproduction of this constraint feature after the resid-
uals have been modeled and the trend must be added back to obtain the modeled
value of Z(u). A simple addition provides no assurance that Z(u) will be non-
negative at unsampled locations.
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These two problems of trend modeling must be addressed in order to achieve
the initial objectives of constructing numerical models that are geologically realistic
and physically plausible.

7.2 Proposed Methodology

The idea is to complement the current practice of trend modeling by applying the
stepwise conditional transformation to account for both heteroscedastic and con-
straint behaviour.

In this application, the residual data are normal score transformed conditional
to its trend component. Based on the probability class of the trend component, the
corresponding residuals can be conditionally transformed:

YR(u) = G−1[F{R(u) | ym(u)}] (7.4)

The result is a transformed residual distribution that is standard Gaussian. The
transform effectively removes any heteroscedastic or constraint features that may
be problematic in the modeling of the residual component.

Much like the forward transformation, the back transformation of the modeled
residual values must be conditioned to its collocated trend value. Complex bivariate
features are reproduced by way of the back transformation that respects the shape
of the multiple conditional distributions.

7.3 Application

7.3.1 Mining Example

The data used in this application was taken from a copper mine. Figure 7.4 shows
the location map of the available drillholes alongside the crossplot of Cu grade
against elevation, which shows evidence of a vertical trend. The location map in
Figure 7.4 also indicates a trend of high values near the centre (and slightly east
of the centre) of the map. The trend model was constructed by first calculating a
vertical trend. Secondly, a horizontal trend map was generated to give a 2D trend.
This involved calculating vertical averages across the horizontal domain from the
data. Using these vertical averages, a 2D trend map can be generated by any of the
common methods previously mentioned. For this data, the horizontal trend map
was created by kriging; Figure 7.5 shows the vertically averaged Cu data that was
used as conditioning data in kriging alongside the resulting kriged map.

Regardless of the method chosen to create a 2D trend map, these lower dimension
trends must still be integrated into a consistent 3D trend model. Using the 1D and
2D trends shown in Figures 7.4 and 7.5, Equation 7.3 was used to obtain a 3D trend
model (see Figure 7.6).

Using the 3D trend model, the residuals were calculated using Equation 7.1. The
resulting relation between the trend and the residual was captured in a crossplot
shown in Figure 7.7. Clearly, a constraint was imposed on the residual values as a
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Figure 7.4: Location map of available drillholes (left) and crossplot of elevation vs.
Cu to illustrate 1-D trend in the vertical direction (right).
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Figure 7.5: Location map of vertically averaged Cu data (left), and resulting kriged
map using this data (right).
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Figure 7.6: Required 1D trend (top left) and 2D trend (top right) for integration to
obtain 3D Cu trend model (bottom).
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Figure 7.7: Linear constraint on residual Cu values due to trend component.
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Figure 7.8: Crossplot of Cu trend vs. normal scores of Cu residual.

consequence of the trend model and non-negative grade values. Modeling the resid-
ual values to obtain a 3D residual model must reproduce this constraint relationship
with the trend in order to obtain non-negative model values of the Cu grade.

To simulate the residuals, sequential Gaussian simulation was used. Applying
the conventional normal score transform to the residuals yields the crossplot shown
in Figure 7.8. Figure 7.8 clearly shows the transference of the linear constraint in
original space (see Figure 7.7) to an almost linear constraint in normal space. The
correlation between the mean and transformed residual is -0.305, significant enough
to indicate that the two RVs should be modeled in a dependent fashion. Further,
the use of popular Gaussian simulation techniques would not be able to reproduce
this type of constraint, regardless of whether kriging or cokriging is used.

The stepwise conditional transformation of the residuals was then performed,
and the corresponding histograms and crossplot are shown in Figure 7.9. The
transformed residuals are univariate Gaussian, and the constraint features have
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Figure 7.9: Histogram of transformed residual (left) and crossplot of Cu trend vs.
the stepwise conditionally transformed residual components (right).
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Figure 7.10: Comparison of trend model (left) and simulated realization of Cu
(right), after adding the trend back to the simulated residuals.

been removed. Further, the zero correlation combined with homoscedasticity of the
resulting bivariate distribution permits independent simulation of the transformed
residuals.

Variography and simulation of the conditionally transformed residuals were then
performed. Following simulation, the simulated residuals were back transformed.
Then, the trend model shown in Figure 7.6 was added to each of the residual re-
alizations to obtain multiple realizations of Cu. One simulated realization of Cu is
shown in Figure 7.10.

Figure 7.11 shows the comparison of the distribution of the first realization of
simulated Cu and the declustered histogram of the original Cu data. The summary
statistics are comparable, as is the shape of the distribution; however, negative
values are apparent in the distribution of the simulated Cu.

Negative grades in the simulated Cu values must also be examined. In the
first realization, 37 444 of the 817 400 blocks simulated yielded slightly negative
Cu grades after the trend and residuals models were added due to imprecision in
the classes. This amounted to 4.6 % of the modeled blocks. In comparison, the
conventional normal score approach yielded 250 856 negative valued blocks or 30.7
%. The conditional transformation approach provides an obvious improvement from
the conventional approach. In fact, all 37 444 negative values fall within the last
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Figure 7.11: Comparison of declustered Cu distribution (left) with the first realiza-
tion of simulated Cu, after adding the trend component to the simulated residuals
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Figure 7.12: Comparison of original Cu trend-residual crossplot and modeled Cu
trend - simulated residual crossplot. Notice that the linear constraint from the
original crossplot was reproduced.

probability class as specified by a trend value ≥ 0.62. This is consistent with the
small group of points in the bottom right corner of Figure 7.12 of the simulated
values (right figure).

The real test in this exercise was actually the reproduction of the bivariate
relation between the residual and its collocated trend value. This is shown by
plotting a single realization of the residuals with the 3D trend model; Figure 7.12
revealed that the linear constraint was reproduced. In contrast, the standard normal
score approach produced the crossplot shown in Figure 7.13. Clearly the linear
constraint was not reproduced by the conventional transform.

7.3.2 Petroleum Example

Figure 7.14 shows the location map of the available 63 wells and the 1D vertical
trend in the well log porosity. Note that for this example, an exaggerated 100:1
stratigraphic coordinate was used.
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Figure 7.13: Crossplot of the modeled Cu trend vs. simulated Cu residuals from
applying the conventional normal score transform. The linear constraint from the
original crossplot is not reproduced.
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Figure 7.14: Location map of available wells (left) and crossplot of elevation vs. core
porosity to illustrate 1-D trend in the vertical direction (right). Note that a 100:1
exaggerated vertical scale was applied.
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Figure 7.15: Location map of vertically averaged porosity data (left) and resulting
areal trend map using this data (right).

Similar to the previous mining example, the data were averaged vertically at
each well location to yield 63 conditioning data. These data are input to a 2D
kriging to give an areal trend model (Figure 7.15). Equation 7.3 was implemented
to integrate the 1D and 2D trends from Figures 7.14 and 7.15 into a consistent 3D
trend model (Figure 7.16).

Using this trend model, the residuals were calculated. A crossplot between these
residuals and the collocated trend values shows the non-linear relationship in Figure
7.17. Note that although the correlation coefficient is close to zero (0.019), this value
only refers to the linear relationship and does not adequately reflect any non-linear
features.

The stepwise transform was applied and the resulting histogram of the trans-
formed residuals and its relation to the transformed trend component are shown
in Figure 7.18. These transformed residuals were then simulated and back trans-
formed. The 3D trend model was then added to the resulting realizations to obtain
multiple realizations of porosity. Figure 7.19 provides a comparison of the 3D trend
model and one realization of simulated porosity. It shows the reproduction of the
large scale features captured by the trend model.

Finally, the histogram of the simulated porosity and the crossplot of the trend
and the residual can be compared. Figure 7.20 shows the histogram reproduction of
porosity. Figure 7.21 shows the comparison between the crossplot using the available
data and the crossplot resulting from the simulated residuals and the trend model.
There was good reproduction of both the univariate distribution and the complex
bivariate non-linear features.

7.4 Remarks

Note that an alternative application of the stepwise conditional transformation in
this particular setting could be performed. Rather than transforming the residuals
conditional to the trend, it is possible to transform the actual variable (Cu and
porosity in the above examples) conditional to the trend. In fact, the latter trans-
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Figure 7.16: Required 1D vertical trend (top left) and 2D areal trend (top right)
used to construct a 3D porosity trend (bottom).
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Figure 7.18: Histogram of the stepwise conditionally transformed (SC) residual
(left),and crossplot of the trend vs. the SC residual components (right).
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Figure 7.19: Comparison of porosity trend model (left) and a realization of simulated
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F
re

qu
en

cy

Porosity (%)

.0 5.0 10.0 15.0 20.0

.000

.040

.080

.120

.160

Declustered Porosity

Number of Data 3257

mean 7.92
std. dev. 3.29

weights used

F
re

qu
en

cy

Simulated Porosity (%)

.0 5.0 10.0 15.0 20.0

.000

.040

.080

.120

.160

Simulated Porosity, Realization 1

Number of Data 274625

mean 7.51
std. dev. 3.32
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Figure 7.21: Comparison of original porosity trend-residual crossplot and modeled
trend - simulated residual crossplot. Notice that the non-linear features were repro-
duced.

formation applied to Cu in the mining example would have completely removed the
potential for negative simulated values. This comes directly from the fact that the
original Cu data are all non-negative values. The quantile transformation for any
conditional distribution respects the minimum and maximum range of the original
data. Since there are no negative Cu values, then back transformation within any
class must always yield non-negative values.

The stepwise conditional transformation is remarkably robust in its ability to
reproduce the complex constraint, non-linear and heteroscedastic relations that may
result from conventional trend modeling practices.
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Chapter 8

Concluding Remarks

In the case of well behaved multivariate distributions, the conventional approach of
independent normal score transformation of each variable may be perfectly adequate
in accounting for multivariate features. Unfortunately, the relationship between at-
tributes of interest in naturally occurring phenomena often exhibit mineralogical
constraints, heteroscedastic and/or non-linear characteristics. For these complex
multivariate relations, the conventional approach does a poor job of reproducing
these relations; the stepwise conditional transformation is effective in explicitly ac-
counting for these problematic distributions.

8.1 Stepwise Conditional Transformation

The stepwise conditional transformation is a robust transformation method for mul-
tivariate data. Its application as a pre- and post-processing transform to Gaussian
simulation, makes it remarkably simple to simulate multiple variables while honour-
ing complex multivariate relations. Several “features” of this technique are impor-
tant for application to real data:

� No assumption is made on the shape of the input multivariate distribution.
The transform removes all structure in the input multivariate distribution,
making it particularly robust in handling problematic characteristics of multi-
variate distributions such as heteroscedasticity, non-linearity and mineralogical-
type constraints. Restoration of the input structure is achieved in back trans-
formation.

� The resulting variables are independent at lag distance h = 0 because all
conditional distributions are transformed to standard normal distributions.

� Cosimulation may not be required. Independent simulation of the transformed
variables can proceed after verification that the cross covariance is approxi-
mately zero for all lag distances, i.e. C ′

ij(h) � 0, i �= j,h > 0. Back transfor-
mation restores the multivariate dependence between the original variables.

� The covariance structure of the original variables is embedded in the covari-
ance structure of the conditionally transformed variables. This is because the
transformed secondary variables are a combination of the original variables.
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� The order of the transformation matters since the nth variable is a function of
the first n − 1 variables. Choosing the most continuous variables first works
best in practice.

� In presence of insufficient data for reliable inference of all conditional distribu-
tions, there are two possible options for application: (1) a smoothing algorithm
could be used to “fill in” the multivariate distribution so that reliable condi-
tional distributions can be identified, and (2) allow dynamic class expansion
within the transformation so that more data can be used to identify more
reliable conditional distributions.

� Non-isotopic sampling (that is, all variables are not available at all locations)
is a serious limitation of the technique. If there are some isotopic samples
available, then the transform can proceed in one of two ways: (1) choose
the more densely sampled variable as the primary variable, or (2) choose the
more important variable as the primary and simulate to obtain a value at
each location, and then transform the secondary variable conditional to the
simulated values of the primary variable.

In practice, multivariate geostatistical simulation typically considers no more
than three or four variables for modeling. Although conventional models of coregion-
alization and the corresponding cosimulation approaches do not theoretically limit
the maximum number of variables that can be modeled, the practical demands of
implementation to more than four variables makes for a cumbersome and challenging
work flow. In this regard, the “nested” application of the stepwise transformation
to the Red Dog data showed that the simulation of as many as seven variables is
facilitated by the stepwise transform. Moreover, for a reduced area, the simulation
approach showed a 3% increase in profit over the conventional estimation approach.

Further, the stepwise conditional transformation is effective not only in the tra-
ditional view of simulating multiple variables, but it is also effective in geostatistical
modeling with a trend. For this particular application, the transformation allows for
the consideration of the trend component collocated with the residual values. This
permits the reproduction of any complex relations that may exist between the trend
model and the resulting residuals. This reduces the potential for negative simulated
grades or ratios that exceed 1.0.

The stepwise conditional transformation is a tool that improves multivariate
Gaussian simulation. The resulting models are better in the sense of capturing mul-
tivariate relations that are closer to the truth; hence these models are more accurate
in reproducing the joint uncertainty. Used in resource planning and management,
these models lead to better informed decisions.

8.2 Guidelines for Practical Application

Within the engineering discipline, the impact of any one technique or methodology
depends on its widespread use in industry practice. For this reason, some guidelines
for applying the stepwise conditional transformation to real data are provided below.
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� Choosing the appropriate transform method for Gaussian simulation: Ap-
ply the normal score transform, and check the multivariate distribution of
the transformed variables. If the multivariate distribution(s) show linear, ho-
moscedastic relations, then apply the conventional normal score transform.

If the multivariate distributions show any or a combination of non-linear, con-
straint or heteroscedastic features, then use the stepwise conditional transform.

� If stepwise conditional transform is used, the following decisions must be made:

1. Choosing the number of variables to transform simultaneously: One con-
sideration is the number of samples that are available. The minimum
number of data should be between 10N to 20N samples, where N is the
number of variables. For instance, for 2 variables, there should be at
least 100 samples; for 3 variables, there should be at least 1000 samples.
For a large number of variables, transformation of the variables can be
performed using pairs or triplets of variables.

2. Choosing the type of implementation: This depends on the number of
data available and the number of variables of interest. If the number of
variables is greater than 4, then a nested approach may be warranted
given the number of samples available. Otherwise, the conditional trans-
formation of up to three or four variables should not be a problem (given
that sufficient data are available).

3. Choosing the transform order:
(a) If there are a large number of nonisotopic samples, then choose the

most densely sampled variable first; however, if the more sparsely
sampled variable is more important and hence its spatial correlation
must be preserved, then choose this variable first. In the latter case,
estimation can be performed of the more important variable in order
to permit transformation of the available secondary variables at other
locations.

(b) If the number of data are approximately equal and isotopic, then
a preliminary assessment of the similarities between the structures
of the direct variograms for the variables is required. If the direct
variograms are similar in type of structure, range and variance con-
tributions, then examine which direct variogram structure yields the
closest fit to the experimental cross-variogram structure when it is
scaled by the cross correlation coefficient. The variable that gives
the best fit should be chosen as the primary variable.
In the case where the direct variograms for the original variables are
dissimilar, the most continuous variable should be chosen as the pri-
mary variable. Continuity of a variable can be assessed by comparing
the nugget effect, structure type and range of the variogram.

(c) If exhaustive secondary data variables are available, such as seismic
data, then these should be chosen as the primary variable.

4. Choosing the number of classes: This depends on the number of data
available as well as the set of variables to be transformed. A simple
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guide is to calculate C = N
√

Ndata where C is the number of classes,
Ndata is the number of data available, and N is the number of variables.
Too small a choice (≤ 5) may produce transformed variables that are
still correlated, while too large a choice may result in poorly defined
conditional distributions. Dynamic class expansion works well for the
latter case.

5. Choosing the type of smoothing: If sparse data is a concern, then a kernel
smoothing algorithm can be applied or a dynamic class expansion can be
permitted. If the number of data is low, that is, below the minimum
number of available data suggested above, then kernel smoothing should
be used. If the concern is sparse data in the transformation of only the
last variable, then allow dynamic class expansion.

8.3 Future Research in Multivariate Geostatistics

Geochemical Information for Stepwise Conditional Transformation. Al-
though the stepwise conditional transformation can reproduce mineralogical con-
straints, it can only do so if there are sufficient data to clearly define the boundaries
of the constraint relations. These constraints may represent stoichiometric con-
straints as different variables compete for space within the rock mass [50]. Lyall
(2000) provides an example situation of a rock mass consisting of two variables,
X2Y and XY where the elements X and Y have identical atomic mass [50]. He
shows that any rock mass containing a mixture of the two minerals must have ratios
of X : Y that must lie between 1 to 2.

Similarly, the consideration of multiple variables with more complex stoichio-
metric relations could yield a set of non-linear constraints that contains the region
of plausible values. No values should be back transformed outside of this envelop. If
geochemical information is available and is capable of defining the bounds of these
mineralogical envelops, then incorporation of this information into the stepwise con-
ditional transformation should improve the reproduction of these stoichiometric re-
lations.

Stepwise Conditional Transformation for MultiGaussian Kriging. Verly
(1984) proposed multiGaussian (MG) kriging as a way to adhere to the homoscedas-
tic, linear assumptions of kriging while estimating the original data variable [72, 74,
75]. His idea was to perform kriging of the normal scores of the data, and then to
numerically integrate between the normal scores distribution, defined by the kriged
estimate and variance, and the original data distribution, to determine the estimate
in original units. In this way, kriging in normal space yields exactly the correct con-
ditional expectation, but in direct space, the mean must be numerically integrated
since it does not coincide with the median value.

The stepwise conditional transformation can be used to perform multivariate
MG kriging. Rather than krige the normal scores, kriging of the stepwise condi-
tional (SC) scores could be performed. The kriging equations would be no more
complicated, only the numerical integration would be based on conditional distri-
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butions that must be back transformed in a conditional manner. This conditioning
would account for multiple variable estimates, in a similar fashion to cokriging with
the exception that multiGaussian assumptions would be respected.

Direct Sequential Simulation for Multiple Variables. Unlike conventional
geostatistics, the concept of direct sequential simulation does not involve any re-
quirement for data transformation. The method should reproduce the data distri-
bution and simulation should proceed without any assumptions regarding the input
distribution. Furthermore, simulating directly in original space should permit the
integration of data of different volume supports. Although the concept is a relatively
good one, its application to date has been unsuccessful in presence of non-Gaussian
distributions. Recent developments and ideas promise to overcome past limitations
[10, 18, 80, 59, 66]. A methodology could be developed to extend direct simulation
to include multiple variables: the idea of direct sequential cosimulation.

Recent advances in the inference of univariate conditional distributions [18, 59]
provide a key link to the extension of DSS to multivariate multiscale data. Deutsch
et. al. (2001) proposed the identification of conditional distributions using normal
quantile transformations. The transform between the global histogram in original
space and its normal transform is well understood. In Gaussian space, the condi-
tional distributions associated to a certain mean and variance are easy to obtain.
The idea then is to perform a reverse quantile transform of the conditional distri-
bution from Gaussian space to find its counterpart in original data space. Using
this approach, a database of conditional distributions (in original space) can be
prepared. This database can then be used to simulate in direct space without the
requirement for data transformation.

Appendix B lays out the basic framework to extend the DSS algorithm to appli-
cation for multivariate data. It presents a review of the cokriging formalism and a
discussion of anticipated theoretical and practical challenges. The proposed method-
ology for direct sequential cosimulation of multiple multiscale data is also presented
in the Appendix. A multivariate distribution scaling approach is proposed to infer
the multivariate conditional distribution. Implementation and testing of the pro-
posed methodology is a priority. Future work will involve identification, exploration
and validation of other methodologies that may be applied in order to achieve this
same objective.

Multivariate Multiple Point Geostatistics. Classical geostatistics relies on
two-point geostatistics, that is, reliance on measures like the variogram or the co-
variance function. The idea behind multiple point geostatistics is to extract more
information about the phenomena by accounting for information between more than
two data at a time.

Recent work in multiple point geostatistics has focused on the idea of neural net-
works and training images. In this sense, multiple points accounts for multivariate
spatial information.

Accounting for multiple points as well as multiple variables amounts to getting
one step closer to defining the spatial law. Currently, the framework for such ambi-
tious goals does not exist, but the notion of a multivariate multiple point geostatistics
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presents a new and exciting challenge for this still relatively young field.
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Appendix A

Program Details

Based on the numerous options available for implementing the stepwise conditional
transformation, there are two slightly different versions of the program available. All
programs were developed in the same format as the Geostatistical Library (GSLIB)
[21].

List of Programs:

� scatsmth k performs the kernel smoothing of the bivariate distribution.

� stepcon performs the stepwise conditional transformation with all the options
discussed in Chapter 4, with the exclusion of the kernel smoothing.

� stepcon k performs the stepwise conditional transformation specifically to
read in a transformation table from scatsmth k.

� backstep performs the back transformation of the simulated values to original
units.

A.1 Kernel Smoothing

The first program, called scatsmth k, is the scatterplot smoothing program that
uses the kernel smoothing of Section 4.3. The corresponding parameter file is shown
in Figure A.1. As well, the current implementation of this multivariate smoothing
is designed for only two variables.

The following is a description of the parameters:

� datafl: file with input data to be smoothed. This file must contain the normal
scores of the data; the current program is hardcoded to smooth the bivariate
distribution in normal space.

� vcol(1), vcol(2), vcol(3): columns for normal scores of variable 1, variable
2 and weights if there are any.

� tmin, tmax: trimming limits to filter out data.

� xscmin, xscmax: minimum and maximum values for variable 1

� yscmin, yscmax: minimum and maximum values for variable 2

� outfl: file for output smoothed distribution.

� transfl: file with the transformation table to be read into stepcon k.
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Parameters for SCATSMTH_K
*************************

START OF PARAMETERS:

../data/cluster.dat - file with data
4 5 0 - columns for X, Y, wt
-1.0e21 1.0e21 - trimming limits
-4.0 4.0 - X min and max
-4.0 4.0 - Y min and max
scatsmth_k.out - file for smoothed distribution output
scatsmth_k.trn - file for transformation table
0.602 - correlation coefficient
0.05 0.05 - X and Y variance for kernel density

Figure A.1: Parameters for scatsmth k.

� corr: correlation of kernel distributions to be populated.

� usrvarx, usrvary: user specified variance for variable 1 and 2 for kernel
density.

The smoothing in bivariate space is set up like a 2-D grid, consisting of 100
discretizations on both axes. The X and Y minimum and maximum values define
the extent of this 2-D grid (in normal space). The output file with the smoothed
distribution is reported based on the 100 partitions created for both variables. Each
block in the established 100 × 100 grid is reported with its bivariate frequency and
its associated Gaussian transform based on the kernel smoothing. The bivariate
frequency defines the conditional distribution of the secondary variable given the
value of the primary variable.

The transformation table is output from scatsmth k to be read in as the input
transformation table in stepcon k (see Figure A.3).

A.2 Stepwise Transformation: Typical Application

The first version of the stepwise conditional transformation, stepcon, is used to
perform the forward transformation. The corresponding parameters required are
shown in Figure A.2 and are explained below:

� datafl: file with input data to be transformed.

� nvart: number of variables to transform.

� vcol(i), i=1,...,nvart, iwt: columns for variables to transform, and column
for weights.

� tmin, tmax: trimming limits to filter out data.

� nclass: number of classes to partition distributions.

� ipart: specify type of partitioning: “delta p” refers to a partitioning based on
probability thresholds while “delta y” corresponds to a partitioning by equal
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Parameters for STEPCON
**********************

START OF PARAMETERS:
../data/cluster.dat - file with data
3 - number of variables to transform
13 14 15 - columns for variable transformation
-1.0e21 1.0e21 - trimming limits
10 - number of classes
1 - partition by delta p (=1) or delta y (=0)
stepcon.out - file for output
stepcon.trn - file for output transformation table
200 - number of quantiles to report
0 - allow despiking (1=yes, 0=no)
1 - allow dynamic class expansion (1=yes, 0=no)
50 - minimum data per class
0 - 1=transform according to specified ref dist
histsmth.out - file with reference dist.
1 2 - columns for variable and weight

Figure A.2: Parameters for stepcon.

data value intervals. In most cases, “delta p” is an appropriate choice as this
will ensure that the number of data in each class is approximately the same
as all other classes for the same variable.

� outfl: file for output. This file contains nvart columns appended to the
original data file with the transformed data values.

� transfl: file with the transformation table to be read into backstep.

� nquant: number of quantiles to report in the tranformation file. In the case
of a large dataset, the output transformation file may be large in size so the
idea is to allow the user to control the number of values reported to the file.

� idespike: option to allow despiking or not. In some cases, despiking may not
be desirable. The user is able to specify whether or not the data should be
despiked.

� iexpand: option to allow dynamic class expansion, 0=no and 1=yes.

� mindat: minimum number of data to define a conditional distribution. If
iexpand is set to 1, then if the minimum number of data is not found, then
the class will expand until the minimum number is found.

� ismooth: consider a reference distribution for the primary variable, 0=no and
1=yes.

� smthfl: if ismooth=1, then read this file to get the reference distribution.

� isvr,iswt: column for data and weight to define the reference distribution.
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Parameters for STEPCON_K
************************

START OF PARAMETERS:

../data/cluster.dat - file with data
2 - number of variables to transform
13 14 - columns for variable transformation
-1.0e21 1.0e21 - trimming limits
10 - number of classes
1 - smoothed distribution, yes=1,no=0
scatsmth_k.trn - file for input transformation table
stepcon.out - file for output
stepcon.trn - file for output transformation table

Figure A.3: Parameters for stepcon k.

A.3 Stepwise Transformation: Kernel Smoothing

The stepwise conditional transform program was revised to handle a reference dis-
tribution for the secondary variable, where the original versions only applied the ref-
erence distribution to the primary variable. This program is called stepcon k.par,
and the parameter file stepcon k.par is shown in Figure A.3.

Most parameters are straightforward. The third and fourth lines from the bot-
tom in the parameter file allow use of a bivariate smoothed distribution obtained
from scatsmth k. Recall the scatsmth k is currently set to handle only two vari-
ables, so the number of variables to transform can only be two.

A.4 Back Transformation

Regardless of whether stepcon or stepcon k is applied, the same back transfor-
mation program, backstep can be used. Figure A.4 shows an example parameter
file that is required for the program.

The following is a description of the parameters:

� nvart: number of variables to back transform

� itrans: for each variable, it is possible to back transform either one or all of
the variables

� datafl: a file consisting of the data to be back transformed; there must be
nvart data files.

� transfl: file with the transformation table. This can be the transform table
from stepcon or scatsmth k.

� outfl: file for output.

� ismooth: flag to identify whether a smoothed bivariate distribution was used
in the forward transform.
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Parameters for BACKSTEP
***********************

START OF PARAMETERS:
3 - number of variables
1 1 1 - back transform? (0=no, 1=yes)
var1.out - file with variable 1
var2.out - file with variable 2
var3.out - file with variable 3
stepcon.trn - file with input transformation table
backstep.out - file for output
0 - smoothed distribution, 1=yes, 0=no
nspor.trn - univariate transformation table for var1
nsper.trn - univariate transformation table for var2

If smoothed dist = 0, delete lines for univariate transform table

Figure A.4: Parameters for backstep.

� nstransfl: file with the univariate transformation tables obtained from per-
forming an independent normal score transform on each variable (prior to
executing scatsmth k). As before, if ismooth is set to 1, then only two
variables can be back transformed.
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Appendix B

A Framework for Direct
Sequential Simulation for
Multiple Variables

The idea of direct sequential simulation (DSS) is to simulate in original data units,
without assumptions or transformations about the data distribution. This allows
the use of multiscale data in DSS.

Recent advances in the inference of univariate conditional distributions [18, 59]
provide a key link to the extension of DSS to multivariate multiscale data. Deutsch
et. al. proposed the identification of conditional distributions using normal quantile
transformations. The transform between the global histogram in original space
and its normal transform is well understood. In Gaussian space, the conditional
distributions associated to a certain mean and variance are easy to obtain. The idea
then is to perform a reverse quantile transform of the conditional distribution from
Gaussian space to find its counterpart in original data space. Using this approach,
a database of conditional distributions (in original space) can be prepared. This
database can then be used to simulate in direct space without the requirement for
data transformation.

Thus far, development of the DSS algorithm has been limited to simulating one
variable at a time. (Co)kriging provides the mean and variance parameters of con-
ditional univariate distributions. The focus of this research is to simultaneously
simulate multiple variables by inferring a conditional multivariate distribution. The
framework to accomplish this objective is presented, including a review of the cok-
riging formalism and a discussion of anticipated theoretical and practical challenges.
The proposed methodology for direct sequential cosimulation of multiple multiscale
data is presented.

Review of Generalized Cokriging

Suppose there are P variables, Zp, p = 1, . . . , P with mean µp defined on support
Vp centered at location uαp, where α = 1, . . . , np and np is the number of available
data of type p. It is not necessary that the supports Vp, p = 1, . . . , P be constant.

Zp(uαp) =
1
Vp

∫
Vp

Zp(uαp)du

The residual of the original Zp variable about its mean, Yp(uαp)
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Yp(uαp) = Zp(uαp) − µp(uαp),∀p,uαp

is also defined on support Vp.
Consider estimating Y ∗

i (u) as a linear combination of the P data types (where
i can be any one of the P variables):

Y ∗
i (u) =

P∑
p=1

np∑
α

λαpYp(uαp)

The corresponding estimation variance is

σ2
E = E{(Yi(u) − Y ∗

i (u))2}
= E{[Yi(u)]2 + [Y ∗

i (u)]2 − 2Yi(u) · Y ∗
i (u)}

= E{[Yi(u)]2} + E{[Y ∗
i (u)]2} − 2E{Yi(u) · Y ∗

i (u)}

= E{[Yi(u)]2} + E




P∑
p=1

P∑
p′=1

np∑
α=1

np′∑
β=1

λαpλβp′Yp(uαp)Yp′(uβp′)




−2E




P∑
p=1

np∑
α

λp(uαp)Yi(u)Yp(uαp)




= E{[Yi(u)]2} +
P∑

p=1

P∑
p′=1

np∑
α=1

np′∑
β=1

λαpλβp′E{Yp(uαp)Yp′(uβp′)}

−2
P∑

p=1

np∑
α

λp(uαp)E{Yi(u)Yp(uαp)}

= C̄(Vi(u), Vi(u)) +
P∑

p=1

P∑
p′=1

np∑
α=1

np′∑
β=1

λαpλβp′C̄(Vp(uαp), Vp′(uβp′))

−2
P∑

p=1

np∑
α

λp(uαp)C̄(Vi(u), Vp(uαp))

with

C̄(Vp(uαp), Vp′(uβp′)) =
1

Vp · Vp′

∫
Vp

du

∫
Vp′

C(Vp(uαp), Vp′(uβp′))dv

Minimizing the error variance with respect to the weights gives the
∑P

p=1 np equa-
tions that constitute the simple cokriging system of equations:

P∑
p′=1

np′∑
β=1

λβp′C̄(Vp(uαp), Vp′(uβp′)) = C̄(Vi(u), Vp(uαp)) (B.1)
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where p = 1, . . . , P and α = 1, . . . , np. In matrix notation, the left hand side
covariance matrix consists of P × P submatrices of volume to volume covariances
between different data types.[

[C̄(Vp,Vp′)], p, p′ = 1, . . . , P
]

where each submatrix consists of np×np′ covariances between the p and the p′ data.

C̄(Vp,Vp′) =




C̄(Vp(u1p), Vp′(u1p′)) · · · C̄(Vp(u1p), Vp′(unpp′))
...

. . .
...

C̄(Vp(unpp), Vp′(u1p′)) · · · C̄(Vp(unpp), Vp′(unpp′))




The large covariance matrix (containing all submatrices) is symmetric.

[C̄(Vp,Vp′)] = [C̄(Vp′ ,Vp)]T

The column vector of weights and right hand side covariances then consists of∑P
p=1 np elements:

λ =




λ11

...
λn11

...

...

λ1P

...
λnP P




C̄(Vi(u),Vp(uαp)) =




C̄(Vi(u), V1(u11))
...

C̄(Vi(u), V1(un11))

...

...

C̄(Vi(u), VP (u1P ))
...

C̄(Vi(u), VP (unP P ))




Solving for the weights in the cokriging system of equations (B.1) gives the minimized
error variance known as the simple cokriging (SCK) variance

σ2
SCK = C̄(Vi(u), Vi(u)) −

P∑
p=1

np∑
α=1

λαpC̄(Vi(u), Vp(uαp))

The resulting cokriging estimate and estimation variance correspond to the con-
ditional expectation and variance of the RV Yi(u). The above cokriging system
corresponds to simple kriging; however, it is straightforward to modify the above
formalism to reflect the unit sum constraint of the weights for ordinary kriging.

Simultaneous Cokriging of Multiscale Data. We can consider the simulta-
neous cokriging of M multiple data types simply by changing the column vector of
weights and right hand side covariance into an M × P matrix, where M ≤ P .

Y ∗
1 (u) =

P∑
p=1

np∑
α

λ1
αpYp(uαp)

...

Y ∗
M (u) =

P∑
p=1

np∑
α

λM
αpYp(uαp)
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Solving for the weights of the resulting cokriging system requires little additional
effort since the large left hand side covariance only has to be inverted once. Matrix
multiplication of the inverted covariance matrix with the additional M − 1 columns
of the right hand side covariance will give the weights to estimate the other M − 1
additional variables.

λ =




λ1
11 · · · λM

11
...

...
λ1

n11 · · · λM
n11

...
...

...
...

λ1
1P · · · λM

1P
...

...
λ1

nP P · · · λM
nP P




C̄(Vi(u),Vp(uαp)) =




C̄(V1(u), V1(u11)) · · · C̄(VM (u), V1(u11))
...

...
C̄(V1(u), V1(un11)) · · · C̄(VM (u), V1(un11))

...
...

...
...

C̄(V1(u), VP (u1P )) · · · C̄(VM (u), VP (u1P ))
...

...
C̄(V1(u), VP (unP P )) · · · C̄(VM (u), VP (unP P ))




The only additional computations required in order to simultaneously estimate
the collocated data types is the determination of the right hand side volume to
volume covariance between the location to be estimated and the nearby data of P
types.

While cokriging of one variable gives the conditional expectation and variance
of the RV, simultaneous cokriging of multiple RVs gives the conditional mean vec-
tor and covariance matrix of the M RVs. Simulation using these distributional
parameters must still be performed.

Example of Cokriging of Multiscale Data

Consider two types of data - 7 core samples of variable Y1 and 3 seismic data of
variable Y2. The core data are considered to be point-scale data, and the seismic
data are block scale data informing a 50× 50 volume. Suppose we are interested in
cokriging an intermediate 10× 10 volume. Without loss of generality, suppose both
variables, Y1 and Y2, have the same direct isotropic variogram:
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Figure B.1: 2-D map of core and seismic data. Seismic data values are shown in
larger font centered on the 50 × 50 volume which it informs.

γ(h) = 0.5Spha=3(h) + 0.5Spha=15(h)
The correlation between Y1 and Y2 was chosen to be 0.70, with an intrinsic cross
variogram:

γ(h) = 0.35Spha=3(h) + 0.35Spha=15(h)

In practice, we calculate these point-scale statistics by downscaling the seismic
statistics (see Oz et. al. [58, 56]). We create a consistent data set by simulation.

Two unconditional Gaussian simulations were used to generate two reference
2-D maps at the point scale on a 150 × 50 grid. The first map is considered the
reference map of the core data. Seven samples were drawn from this map to give
the 7 core samples that will be used for cokriging. The second map was generated
by cokriging with a correlation of 0.70. This “reference” map was then upscaled to
the 50 × 50 volume to provide the 3 seismic data. Figure B.1 shows both the core
and seismic data on the same map.

Cokriging is performed by setting up the simple cokriging equations (see Equa-
tion B.1). Average volume to volume covariances are numerically calculated by
discretizing each volume into 25 points (i.e. 5 × 5 discretizations), calculating the
covariance values between the points in one volume and the points in the second
volume, and then averaging these covariance values. To set up the left hand side
covariance matrix (i.e. covariance between the data and themselves), the direct var-
iograms were used to get the average covariance between two data of the same type,
while the cross variogram is used to determine the average covariance between two
different types of data. Similarly, the right hand covariance vector (i.e. covariance
between the data and the volume to be estimated) relies on the direct variogram for
data of the same type and the cross variogram for data of different types. The key
in this latter calculation is that the intermediate scale (which is the volume that we
are interested in) is the same type of “data” as the core data and not the seismic
data. This means that the average covariance between the core data and the volume
to be estimated uses the direct variogram, while the average covariance between the
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seismic data and this same volume uses the cross variogram. Note that in all cases,
it is the point scale variograms that are used in the numerical calculation.

For the 10 × 10 volume centered at coordinates (35,35), the resulting cokriged
estimate is 0.15882 with an estimation variance of 0.41576. This simple exercise
for one variable can easily be extended to the simultaneous cokriging of multiple
variables (as discussed above) to obtain the conditional mean vector and covariance
matrix. This multiscale cokriging is key to DSS for multiple variables; however,
some theoretical and practical challenges still exist in the implementation of a direct
sequential cosimulation (DSCosim) algorithm.

Theoretical and Practical Challenges of DSS for Multiple

Variables

Classical geostatistical simulation relies on both kriging and Monte Carlo simulation
to obtain simulated values. DSS is no different. Kriging (or cokriging in the case
of multiple variables) is used to determine the mean and variance of the conditional
univariate distribution at the location to be simulated. Assuming that the two dis-
tributional parameters (mean and variance) fully define the conditional distribution,
Monte Carlo simulation is performed to obtain a simulated value.

For multivariate geostatistics using multiscale data, inference of the coregional-
ization model is still a challenge. In the case of multiscale data, downscaling the
spatial measures of the larger scale data to the same scale as the smaller scale data
is especially challenging. It requires the inference of a short scale structure for a
volume that is smaller than that informed by the data. In the previous cokriging
example, the average covariance values were numerically determined using the point
scale variograms. In the case of real data where the point scale variogram of the large
scale data (such as seismic) is unknown, programs exist to downscale the block scale
variogram to a point scale (or some small finite scale) variogram; however, it is the
inference of the coregionalization model at the point scale that is most challenging.
This requires:

1. Inference of a same-scaled cross-variogram based on different scaled data;

2. Downscaling of the direct block-scale variogram to a direct point-scale vari-
ogram; and

3. Iterating between Steps 1 and 2 to ensure (i) a legitimate model of coregional-
ization, and (ii) consistency between the model variograms and the variability
of the natural phenomena.

The inference of the coregionalization model is a difficult issue in any conventional
multivariate geostatistics that accounts for multiscale data.

Two other challenges that are a result of simulating in direct space are (1)
the limitations of using kriging in simulation, and (2) inference of the multivariate
distribution.

Implications due to Kriging

Kriging is a linear estimator. The kriging estimate is also the conditional expectation
of the RV given the conditioning data. A consequence of linearity in the conditional
expectation is the inability to reproduce complex non-linear features. Unfortunately,
real data exhibit complex relations.

Kriging also provides information about the uncertainty in its estimate. This
is the kriging variance. The variance is independent of the data values and the
estimate, hence it is homoscedastic. In contrast, the variance of mineral grades
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or petrophysical properties found in a real deposit or reservoir is heteroscedastic.
For example, it is common to find a low variance in a low valued area, and a
correspondingly high variance in a high valued area. The use of the kriging variance
does not account for heteroscedastic behaviour of the conditional distribution.

Inference of Multivariate Distribution

Simultaneous kriging of all variables yields the conditional mean vector and the
conditional variance corresponding to each variable. All that is required are the
correlation coefficients at h = 0 in order to fully define the covariance matrix of the
multivariate distribution at h = 0. Given that these correlations are known or can
be estimated (as in the case of non-isotopic sampling [77]), and that the multivariate
distribution is fully defined by its mean vector and covariance matrix, simulation
can proceed by recursive application of Bayes relation.

In the conventional Gaussian framework, the mean vector and covariance ma-
trix provides all the information required to define the multivariate distribution.
However, in direct space this information is insufficient. In fact, multivariate distri-
butions of real data generally do not follow nice parametric forms. In these instances,
knowing only the mean vector and covariance matrix is not sufficient to define the
multivariate distribution.

Deutsch et. al. proposed a methodology to determine the conditional univariate
distributions with only the mean and variance provided from kriging [18, 59]. Using
this approach, the conditional marginal distribution of each variable can be obtained.
The main challenge is then to identify the conditional multivariate distribution
knowing these conditional marginal distributions.

Updating Technique to Obtain Conditional Multivariate Distribu-
tion

Let’s review the information that is readily available: the original data distributions
consisting of the global (or standard) univariate and multivariate distributions, and
the conditional (or non-standard) univariate distributions obtained from solving
the cokriging system and the algorithm presented by Deutsch et. al. [18, 59].
To determine a non-standard multivariate distribution, a simple iterative updating
procedure using all the available distributions is proposed.

Consider the bivariate case, where we have Y1 and Y2 data. The algorithm
proceeds as follows:

1. Update the global bivariate distribution, fY1,Y2(y1, y2), by scaling it by the
ratios of the non-standard univariate conditional distribution, fY ′

i
(yi), to the

standard univariate distribution, fYi(yi), i = 1, . . . , 2.

fY ′
1 ,Y ′

2
(y1, y2) = fY1,Y2(y2, y1) ·

fY ′
1
(y1)

fY1(y1)
· fY ′

2
(y2)

fY2(y2)
(B.2)

2. Calculate the new marginal Y1 and Y2 distributions that result from Equation
B.2 and reset fYi(yi), i = 1, . . . , 2 to these new marginals:

fY1(y1) =
∫

Y2

fY ′
1 ,Y ′

2
(y1, y2)dy2

fY2(y2) =
∫

Y1

fY ′
1 ,Y ′

2
(y1, y2)dy1
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Also, reset fY1,Y2(y1, y2) to the new updated global distribution of Equation
B.2:

fY1,Y2(y1, y2) = fY ′
1 ,Y ′

2
(y1, y2)

3. Calculate corresponding summary statistics: mean, variance of marginal dis-
tributions, and covariance and correlation of (updated) bivariate distribution.

4. Check that the mean and variance of new marginal distributions fY1(y1)
and fY2(y2) match those of the desired conditional distributions, fY ′

1
(y1) and

fY ′
2
(y2), within some acceptable margin, ε. If this condition is not met, go to

Step 1.

Scaling of the multivariate distribution to obtain a conditional multivariate dis-
tribution should reproduce complex, non-linear and/or heteroscedastic properties.
Note that spatial heteroscedasticity of the simulated values (as mentioned in the sec-
tion on kriging implications) is different from heteroscedasticity in the multivariate
distribution at h = 0 (for which this updating process will account).

Validation of Updating Approach

Consider a simple bivariate Gaussian global distribution with correlation ρ. Given
parameters that specify a conditional distribution, the above updating methodology
can be applied. For this purpose, a numerical exercise was devised for which the
following parameters were set:

� Global Distribution is standard bivariate Gaussian with correlation of ρglobal =
0.30.

� Conditional Distribution parameters:

E{X} = 1.2
V ar{X} = 0.25

E{Y } = 0.0
V ar{Y } = 1.0

Furthermore, we know that restandardizing the marginal X and Y distributions to
non-standard means and variances will not change the correlation of the resulting
bivariate distribution.

The updating approach was applied and the corresponding results are shown in
Figure B.2. The reference global and desired conditional distributions are shown at
the top (left and right, respectively). Three iterations were required to obtain an
updated conditional distribution that reproduced the desired conditional univariate
statistics; however, the resulting updated conditional distribution has a correlation
of 0.161, not the 0.30 that would be found by rescaling a bivariate Gaussian distri-
bution.

Unfortunately, re-standardizing the marginal distribution of X to some other
non-standard Gaussian distribution and then calculating the resulting bivariate dis-
tribution does not amount to a conditional distribution in the conventional sense of
the term. Rather, this generates a new global bivariate distribution with the desired
univariate marginal distributions. Thus, the reference conditional distribution may
be incorrect, that is, the expected correlation of 0.30 may not be correct. To investi-
gate the difference between the correlation of the conditional distribution with that
resulting from the iterative scaling approach, a slight shift in the thought process is
proposed.

183



Global Frequencies - Standard

X

Y

-4.000 4.000
-4.000

4.000

.0

.0005000

.001000

.001500

.002000

True Conditional Frequencies

X

Y

-4.000 4.000
-4.000

4.000

.0

.0005000

.001000

.001500

.002000

True - Updated Conditionals #1

X

Y

-4.000 4.000
-4.000

4.000

-.0005000

-.0004000

-.0003000

-.0002000

-.0001000

.000000000

.0001000

.0002000

.0003000

.0004000

.0005000

Updated Conditionals #1

X

Y

-4.000 4.000
-4.000

4.000

.0

.0005000

.001000

.001500

.002000

True - Updated Conditionals #2

X

Y

-4.000 4.000
-4.000

4.000

-.0005000

-.0004000

-.0003000

-.0002000

-.0001000

.000000000

.0001000

.0002000

.0003000

.0004000

.0005000

Updated Conditionals #2

X

Y

-4.000 4.000
-4.000

4.000

.0

.0005000

.001000

.001500

.002000

True - Updated Conditionals #3

X

Y

-4.000 4.000
-4.000

4.000

-.0005000

-.0004000

-.0003000

-.0002000

-.0001000

.000000000

.0001000

.0002000

.0003000

.0004000

.0005000

Updated Conditionals #3

X

Y

-4.000 4.000
-4.000

4.000

.0

.0005000

.001000

.001500

.002000

Figure B.2: Results from applying iterative updating approach to a global standard
bivariate Gaussian distribution with correlation of 0.30 (top right). Reference condi-
tional univariate distribution for X is set with a mean of 1.20 and a variance of 0.25
(top left). Difference in bivariate probability distribution between reference condi-
tional distribution and corresponding updated conditional distribution are shown
in the remaining left side plots. The updated conditional distributions (for each
iteration) are shown in the bottom 3 right side plots.
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Building a Global Distribution from Conditional Distributions

Suppose that the global multivariate distribution is a linear combination of condi-
tional multivariate distributions. This is analogous to supposing that these con-
ditional distributions are subsets of the multivariate distribution, resulting from
considering only a subset of the data in the domain. This idea is consistent with
the practical application of (co)kriging, which only considers a subset of the data
that are within some neighbourhood of the location of interest.

Without loss of generality, consider that there are m bivariate Gaussian con-
ditional distributions, all with common correlation, ρ. The resulting global bi-
variate distribution is a linear combination of these m distributions (and will be
non-Gaussian unless m → ∞):

f(x, y) =
m∑

i=1

pi · fi(x, y)

where pi, i = 1, . . . ,m are weights corresponding to fi(x, y), i = 1, . . . ,m. The
weights represent the contribution of each subset bivariate distribution to the global
bivariate distribution.

The new global X marginal distribution, f(x), has the following summary statis-
tics:

E{X} =
m∑

i=1

pi · E{Xi} (B.3)

E{X2} =
m∑

i=1

pi · (σ2
i + E{Xi}2) (B.4)

V ar{X} = E{X2} − (E{X})2 (B.5)

Similarly, for the Y marginal distribution, f3(y),

E{Y } =
m∑

i=1

pi · E{Yi} (B.6)

E{Y 2} =
m∑

i=1

pi · (σ2
i + E{Yi}2) (B.7)

V ar{Y } = E{Y 2} − (E{Y })2 (B.8)

The resulting global bivariate distribution has the following covariance,

E{XY } =
m∑

i=1

pi · E{XiYi} (B.9)

=
m∑

i=1

pi · (Cov{XiYi} − E{Xi}E{Yi})

Cov{XY } = E{XY } − E{X}E{Y } (B.10)

ρ =
Cov{XY }√

V ar{X}V ar{Y } (B.11)
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Figure B.3: Schematic illustration of combining subsets of bivariate distributions,
f1(x, y) and f2(x, y). The marginal X and Y distributions corresponding to each
bivariate distribution are given as fi(x) and fi(y), with i corresponding to that distri-
bution. The result of combining these distributions are two marginal distributions,
f3(x) and f3(y).

Figure B.3 is a schematic illustration for the case of m = 2; the resulting global
bivariate distribution is bimodal and non-Gaussian.

Supposing that a global multivariate distribution can be constructed as a com-
bination of conditional distributions, the decomposition of the global distribution
to obtain a particular conditional distribution using the updating approach should
be straightforward.

Proposed Methodology

The proposed algorithm for direct sequential cosimulation incorporates (1) the cok-
riging formalism for multiscale data, (2) a conversion from conditional means and
variances to conditional distributions, (3) an iterative updating technique to obtain
the conditional multivariate distribution, and (4) the stepwise decomposition of this
distribution for cosimulation of multiscale data. Specifically, the main steps of the
sequential algorithm are:

1. Pick a random path visiting all locations.

2. At each location:

(a) Search for all nearby data of different types and/or scale and previously
simulated nodes.

(b) Perform simultaneous cokriging (collocated or full) to determine the pa-
rameters corresponding to the conditional univariate distribution for each
variable.
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(c) Using the cokriged parameters, determine the conditional univariate dis-
tribution for each variable using the approach proposed by Deutsch et.
al. [18, 59]. These distributions will be referred to as the non-standard
marginal distributions.

(d) Determine a non-standard multivariate distribution via the iterative up-
dating approach:

fY ′
1 ,Y ′

2
(y1, y2) = fY2,Y1(y2, y1) ·

fY ′
1
(y1)

fY1(y1)
· fY ′

2
(y2)

fY2(y2)

Resetting the global univariate and bivariate distributions to the previ-
ously updated distributions allows for iterative updating until the desired
conditional univariate distributions are reproduced.

(e) Draw from the non-standard multivariate distribution in a stepwise man-
ner:

i. Draw a simulated value y1 from the conditional marginal distribution
of Y1(y1).

ii. From the conditional multivariate distribution determined in Step 2d,
determine the conditional univariate distribution of Y2(y2) given Y1 =
y1, fY ′

2 |Y ′
1

= y1. Draw y2 from this conditional marginal distribution.

iii. Repeat Step (ii) until a simulated value for each p variable is drawn.
(f) Proceed to next node.

Future Work

Naturally, implementation of the proposed methodology is a priority. It will be
interesting to see how this procedure performs when it is applied to real, complex,
multivariate data. The scaling approach should produce conditional multivariate
distributions that respect the features inherent in the global multivariate distribu-
tion. These features may include non-linearity, constraints, and/or heteroscedastic-
ity.

This will also serve to illustrate the effect of not reproducing the conditional
correlations exactly. Of course, with the use of real data, the reference conditional
distributions are not known. The only real comparison that will be possible is to
determine whether the global multivariate distribution is reproduced. Should these
results be encouraging, further theoretical and practical issues associated with the
implementation will be explored. Simulation results will also be compared to those
produced by some of the more conventional multivariate simulation techniques.

Future research in determining a multivariate conditional distribution will con-
tinue. The consequences of relying on a simple assumption of a stationary ratio (as
in the proposed updating equation) will be explored. Future work will involve iden-
tification, exploration and validation of other methodologies that may be applied in
order to achieve this same objective.
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